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Abstract

In this paper, we provide novel evidence on firms’ attention allocation in a production network.
Based on internet traffic log files collected by EDGAR, we construct a firm-level panel that measures
firms’ browsing intensity on other firms’ electronically filed reports. We find that: (1) firms pay
more attention to other firms that are closer to themselves in terms of network distance; (2) firms pay
more attention to other firms that are more volatile; (3) a firm’s absolute forecast error decreases in
its total browsing activities. We then build a framework where firms rationally acquire information
to set prices in a production network. The model’s predictions on firms’ attention allocation and
price rigidities are consistent with the empirical patterns. In this framework, we show that the
optimal monetary policy design significantly differs from that in a model where informational
frictions are exogenously given, and the optimal policy endogenously induces additional dispersion
in price rigidities.
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1. Introduction

In different sectors of an economy, firms display distinct pricing inertia while forecasting economic
outcomes with various precisions. What economic forces drive these cross-sector heterogeneity in
prices and information? How do firms allocate their limited attention in complex supply chains? How
should a central bank implement the optimal monetary policy when sectoral nominal rigidities are
interdependent and endogenous to their policy? These questions have become increasingly salient,
given the emerging empirical evidence at both firm and industry levels.1 Despite rapid development
in recent literature that studies the macroeconomic impacts of information frictions, these questions
remain largely unexplored.

This paper makes three contributions. Empirically, we provide a novel measure of firms’ attention
allocation based on their browsing history on others’ electronic filings on EDGAR. We document
that the intensity of the bilateral browsing decreases in their network distance but increases in the
volatility of economic activities. Theoretically, we build a framework with rationally inattentive firms
in a production network. We provide an analytical characterization of the equilibrium allocation as
well as the optimal monetary policy rule. In particular, the optimal price stabilization index and the
endogenous price rigidity interact with each other and are jointly determined. Quantitatively, the
model yields properties of both the attention allocation and sectoral price rigidities that are consistent
with data but absent with exogenous information. Due to the information acquisition channel, the
optimal policy endogenously induces additional dispersion in price rigidities.

Attention measurement. Firms’ attention allocations are crucial for their decision-making and for
testing different theories on information acquisition, but they are not directly observable. To overcome
this difficulty, we utilize the EDGAR “Logfile” which contains detailed information on the online
viewing records for every SEC filing published on the EDGAR platform, including a partially masked
IP address and the time of the access requested, among other information. We then uncover the
browsers’ complete IP addresses using the method developed in Chen et al. (2020), and map each
viewer’s uncovered IP address to their true identity with the service provided by ip-info.io. This
procedure allows us to construct a panel of firms’ browsing volume for other firms’ files. The
browsing intensities towards different firms, therefore, provide an account of attention allocation or,
put it differently, an attention network.

We connect these browsing activities with firms’ other economic activities and document the
following facts. First, a firm pays more attention to others that are closer to itself in terms of network
hierarchy. The amount of browsing declines significantly if a firm is not the browser’s immediate
supplier or customer based on the relationship information in the Factset data. In addition, the same
logic extends to the dynamic setting: the browsing activity decreases (increases) after a relationship
breaks (forms). Second, a firm pays more attention to others that are more payoff-relevant in terms of

1See Carvalho et al. (2021), Candia et al. (2023), and Pastén et al. (2024).
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sales share and are more volatile. This observation also holds at the sectoral level, where the payoff
relevance can be measured by the standard input-output linkages. Third, a firm’s absolute forecast
error decreases in its total browsing activities, consistent with the interpretation that more effort in
information acquisition helps reduce informational frictions and improve forecast accuracy.

Theory. To rationalize the observed empirical patterns, we build a framework where firms in dif-
ferent sectors participate in a production network and have to post their prices without perfect
information about sectoral productivity shocks. To overcome the informational frictions, firms can
acquire any signals about various sectoral variables subject to a constant marginal cost in reducing
uncertainty as in Sims (2003). When firms acquire a lot of information, their prices will be more
responsive to underlying shocks, and the prices will be more flexible. In our environment, such
endogenous information acquisition problem and the associated price rigidities are endogenous to
both the network effects in general equilibrium and to the imposed monetary policy. As firms are
connected via the production network, their information acquisition decisions strategically interact
with each other. Meanwhile, the monetary policy directly affects how the nominal wage responds
to sectoral shocks, which in turn will affect firms’ payoff and be internalized in the information
acquisition decision.

Despite these complications, we provide a compact characterization of the equilibrium price
rigidity. Fixing a monetary policy, firms will only acquire a single noisy signal about their nominal
marginal cost. The precision of this signal increases with the variance of the marginal cost process.
The aforementioned network effects and policy effects are nested in the process of the marginal cost,
and the equilibrium allocation boils down to a fixed-point problem between sectoral price flexibilities
and the variance of marginal cost processes. We then provide a uniqueness and existence condition
for this fixed-point problem. In terms of attention allocation, we measure firms’ attention towards
different sectors by the reduction in uncertainty of sectoral fundamentals. We show that firms in
sector 𝑖 allocate more attention to sector 𝑗 if sector 𝑗 is endowed with more volatile productivity
shocks or if sector 𝑖’s sectoral price is more exposed to sector 𝑗’s shock in the influence matrix. This
result is consistent with our empirical account of attention allocation and highlights the underlying
(additional) general equilibrium forces.

Optimal monetary policy. Different from models in which rigidities are due to Calvo-type frictions
or subject to exogenous informational frictions, the rigidities in our model are endogenous. This
poses new challenges for the design of optimal monetary policy. The monetary policy now faces an
additional expectation management role, which can influence firms’ information choices. Further-
more, such management needs to take into account the fact that firms’ information choices are also
interconnected via the production network. We provide a closed-form optimal policy rule that takes
the form of a price stabilization index. This price stabilization index contains two parts: the first ex-
ogenous part is holding firms’ price rigidities unchanged when optimizing the monetary policy rule,
which is identical to that in La’O and Tahbaz-Salehi (2022); the second endogenous part allows firms’
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price rigidities to vary with the policy, which is unique in our setting. The endogenous component
succinctly summarizes the impact of information acquisition in shaping the optimal policy.

Notably, the optimal policy rule and the sectoral price flexibilities are jointly determined, which
opens the door to policy-induced nominal rigidity. In a nutshell, the policymaker is incentivized to
put more weight on more rigid sectors, which helps stabilize the prices in these sectors. However, the
rigid sectors initially have less volatile marginal costs and are more reluctant to acquire information.
This stabilizing effect from the monetary policy tends to reduce the volatility of marginal costs in
these sectors, further dampening firms’ incentive to acquire information and intensifying the price
rigidity. This feedback channel between the optimal policy and endogenous information acquisition
leads to additional dispersion of price rigidities relative to models where price rigidities are fixed
ex-ante.

Quantification. To quantify these mechanisms, we calibrate the model to match the distribution
of the absolute forecast error of earnings per share. The model also yields the distribution of price-
change frequencies similar to the data. The calibrated model is able to produce the attention allocation
pattern that is consistent with the sectoral evidence in the browsing activities. In addition, the model
predicts a positive correlation between the sectoral shock volatility and the sectoral price-change
frequency, which resembles the pattern in the data. Such correlation is natural in our model as firms
tend to acquire more information when their payoff-relevant variables are more volatile. In contrast,
it cannot be easily accounted for in models with ad hoc price rigidity.

We show that in the calibrated model, the optimal monetary policy rule significantly differs
from that under exogenous information or with fixed information capacity. The difference in the
policy rule can be almost entirely accounted for by the heterogeneity in the initial price rigidities.
Due to the aforementioned policy-rigidity feedback channel, more rigid sectors will be assigned
additional weight in the optimal policy with elastic information acquisition than that with exogenous
information. At the same time, the sectoral price rigidities are much more dispersed once the optimal
monetary policy is in place.

Related literature. Our paper complements an expanding literature that has already incorporated
information frictions in the models of production networks (Chahrour et al. (2021); Auclert et al.
(2020); La’O and Tahbaz-Salehi (2022); Angeletos and Huo (2021); Bui et al. (2024)). The subjects
of these research span from aggregate fluctuations driven by sectoral public information, as in Ni-
mark, Chahrour, and Pitschner 2019, to the interactions between higher-order beliefs and production
networks, as in Bui et al. (2024). However, most of these papers focus on settings with exogenous
information structures in which the degree of information (nominal) rigidities are taken as ad hoc
model primitives. Instead, we introduce endogenous information acquisition of rationally inattentive
firms, which aligns with the empirical evidence of firms’ browsing activities and the attention network
we establish.

We model firms’ information acquisition as the optimal choice under the information-capacity
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constraint. This modeling choice places the paper in the vast literature of Rational Inattention (hence-
forth RI) initiated by the seminal contribution of Sims (2003, 2010).2 Relative to this literature, our
paper differs in two aspects. First, we extend the RI framework to a model that features both sectoral
nominal rigidities and input-output linkages. Firms’ optimal attention allocations are determined
by their sectoral network positions. More importantly, attention choices among different sectors
are interconnected via strategic complementarity. Afrouzi (2023) studies how strategic interactions
(competition structure) within each sector affect attention choices and money non-neutrality. In con-
trast, we emphasize the role of underlying attention linkages across sectors in shaping the general
equilibrium outcomes and the design of optimal policy. Second, we adopt the methodology of Miao
et al. (2022) to solve for the unrestricted optimal information choices. The solution requires no prior
assumption on the structure of signals, producing a compact representation of nominal rigidities as a
function of firms’ attentions. A contemporaneous paper by Jamilov et al. (2024) uses a real production
network model to study the impact of endogenous information acquisition (limited attention) on
sentiment-driven aggregate fluctuations. With a pre-specified two-dimensional signal structure, the
authors argue that attentions are centered on downstream firms due to their role as “information
agglomerators”.

In our model, the endogeneity of sectoral attention (nominal rigidity) allows for expectation man-
agement via monetary policy. In this regard, our paper is related to a small literature that discusses the
design of optimal monetary policy with endogenous information frictions (Adam (2007); Paciello and
Wiederholt (2013); Li and Wu (2016); Angeletos et al. (2020)). In previous papers, the optimal mone-
tary policy is derived based on EITHER of the two notions of information endogeneity: (i) learning
endogeneity in the sense that firms learn from prices (marginal costs), and (ii) attention endogeneity
in the sense that firms’ cognitive mistakes (noises) are determined by cost and benefit of information.
We extend the optimal policy analysis to a network setting that captures both endogeneities, and we
depart from previous literature by emphasizing the role of endogenous feedback between attention
and policy in determining the optimal policy implementation.3

This paper is also related to the growing literature that examines the monetary transmission
mechanism and designs optimal monetary policy in production networks.4 The existing literature
primarily focuses on models with time-dependent price settings such as Calvo frictions (e.g., Pasten
et al. (2020), Ghassibe (2021), Rubbo (2023), and Pasten et al. (2024)). To the best of our knowledge,
our paper is the first to study monetary transmission and optimal monetary policy in production

2Notable contributions include Maćkowiak and Wiederholt (2009, 2015), Caplin and Dean (2015), Matějka and McKay
(2015), Luo et al. (2017), Caplin et al. (2018), Hébert and La’O (2023), Caplin et al. (2022), Angeletos and Sastry (2019), and
Flynn and Sastry (2019).

3Ou et al. (2024) study the interactions between endogenous information acquisition and Calvo nominal rigidity in a
two-sector model without input-output linkages. Abstracted from learning endogeneity in the information structure, their
discussion of optimal policy is restricted to the class of price-stabilization indices. In contrast, our optimal policy analysis
is unrestricted in the sense that the central bank can choose the money supply rule as an arbitrary function of productivity
shocks.

4Previous literature focuses on optimal monetary policy in either horizontal or vertical economies, for example, Aoki
(2001), Benigno (2004) and Huang and Liu (2005).
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networks with state-dependent pricing. We demonstrate that monetary policy is able to shape the
distribution of price stickiness in the production network. Enlightened by this feature, we propose a
novel expectation management channel in the optimal monetary policy design.

2. Data and Browsing Activities

Exploiting a unique and novel data set that covers bilateral web browsing between firms, we document
three new facts that offer insights on firms’ attention allocation along the production networks:

Fact 1: A firm pays more attention to firms that are closer to itself in terms of network distance.

Fact 2: A firm pays more attention to firms that are more volatile and payoff-relevant.

Fact 3: A firm’s absolute forecast error decreases in its total browsing activities.

2.1 Data and Stylized Facts

Our empirical analysis leverages three main sources of data: detailed firm-to-firm browsing data on
documents filed at the EDGAR, survey data on firms’ forecasts, and data on input-output linkages
at both firm and industry levels. We begin by describing how we construct the browsing data, while
offering stylized facts on firms’ browsing activities. For more details, please refer to Online Appendix
A.

2.1.1 The EDGAR Browsing Data

Our firm-to-firm browsing data is compiled from EDGAR, which stands for the Electronic Data
Gathering, Analysis, and Retrival system. This system, maintained by the U.S. Secruties and Exchange
Commision (SEC), operates as an electronic disclosure platform used by companies and other entities.5

In particular, all U.S. public domestic companies are mandated to submit filings electronically on
EDGAR since 1996. These filings, freely accessed through the internet, serve as a primary source to
obtain firms’ disclosed documents by, for example, firm managers, investors, and financial analysts.

The SEC’s Division of Economic and Risk Analysis (DERA) started publishing data on internet
traffic for all SEC filings in 2003. This dataset, often referred to as the "EDGAR Logfile," contains
detailed information on the online viewing records for every SEC filing published on the EDGAR
platform, including a partially masked IP address, the date and time of the access requested, and a
unique identifier (the SEC assigns each document an "Accession number") for the disclosed document.

We use the term browser to refer to the viewer of a disclosed document, and browsee to refer to
the owner of a disclosed document. To uncover the browsers’ full IP address, we utilize the method

5The disclosures fall under the Securities Act of 1933, the Securities Exchange Act of 1934, the Trust Indenture Act
of 1939, and the Investment Company Act of 1940. The SEC website provides more information on the EDGAR system:
https://www.sec.gov/edgar/about.
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outlined in Chen et al. (2020). We then use services provided by ip-info.io, a leading IP information
provider, to map each viewer’s uncovered IP address to their true identity. These steps result in a
pairwise browers-browsee database at daily frequency covering the period from 2009 to 2016.6

We measure the browsing intensity of a browser 𝑖 on a browsee 𝑗, denoted as 𝑏𝑖 𝑗𝑡 , by aggregating
the number of online accesses from the browser to all filings owned by the browsee during a certain
time interval 𝑡,

𝑏𝑖 𝑗𝑡 =
∑
𝑠∈𝑡

𝑎𝑖 𝑗𝑠 , (2.1)

where 𝑎𝑖 𝑗𝑠 is equal to 1 if browser 𝑖 requests an online access to browsee 𝑗’s filings at time 𝑠, where
time 𝑠 is within the time interval 𝑡, and 𝑡 can be a day, a month, a quarter or a year.7 In the subsequent
empirical analysis, we define the log browsing volume as 𝑦𝑖 𝑗𝑡 = log

(
𝑏𝑖 𝑗𝑡

)
.

Since attention is an internal cognitive process that can hardly be directly observed, measuring
attention accurately can be a challenging task. We argue that the browsing intensity constructed
above provides a reasonable measure of firms’ attention allocation: we will observe more browsing
records from firm 𝑖 to firm 𝑗 when firm 𝑖 pays more attention to firm 𝑗.

The validity of using browsing intensity to quantify attention arises from two main aspects. First,
firms’ filings published on EDGAR contain the most timely and comprehensive information on their
activities. For example, the SEC mandates firms to disclose unscheduled events through Form 8-K,
ensuring prompt dissemination of crucial information. Additionally, Form 10-K, disclosed to the
public only through EDGAR, offers annual updates in advance of the published annual reports,
allowing critical business-related information to be released at an earlier stage.8 For instance, General
Electric’s 2003 10-K was recorded 800 downloads from the company website, while downloads from
the EDGAR amounted to 21,987 (4,325) during the year (two months) following its filing.9 Second,
although there exist other sources to access firms’ filings such as Bloomberg or Yahoo Finance,
EDGAR has become the primary source for obtaining firms’ filings due to the following advantages:
1) all filings are freely available on EDGAR, while some are not on other platforms, and 2) critical
information such as the income statement or balance sheets is often reported in pre-specified bins
from other sources, leading to the loss of pivotal firm information compared to the original filings
on EDGAR. As a result, EDGAR is likely to be viewed as the most important source of information
when a firm needs to acquire information on other firms. Table B.2 in the Online Appendix lists the
10 types of filed documents with the most browsings.

6We select 2009 as our starting year because prior to 2009, the number of browsings are orders of magnitude less, due
to significant changes in the disclosure requirement by the SEC and EDGAR. The SEC stops releasing SEC internet traffic
data after 2017. More details are provided in the Online Appendix A.1.2.

7Time 𝑠 can be measured as accurately as to a second. If 𝑡 is set to, for example, 2015 January 2, 𝑏𝑖 𝑗𝑡 is equal to 3 when
a browser requests online accesses to a browsee’s document 3 times on that day.

8Note that 10-Ks are sometimes colloquially referred to as "annual reports". Here, "annual reports" refer to the document
released online or in print shortly before the annual general meeting. The data show that annual reports lag 10-Ks for an
average of 61 days.

9The article can be accessed on the Wall Street Journal website at https://www.wsj.com/articles/the-109-894-word-
annual-report-1433203762.

6

https://www.wsj.com/articles/the-109-894-word-annual-report-1433203762
https://www.wsj.com/articles/the-109-894-word-annual-report-1433203762


The full sample consists of companies, institutions, and individuals. Our baseline sample is
restricted to public firms for three main reasons. First, the browsees are primarily public companies,
as only public companies are mandated by the SEC to file disclosures on EDGAR. Second, the
successfully matched IP addresses are mostly owned by public companies. Finally, browsings of
public companies can be matched with other firm-level data sources such as the Compustat, while
information on private companies is typically unavailable. Our baseline sample contains a total of
713,157,510 unique IP addresses from 7,622 public companies, representing 52.4% of all browsings
of disclosed files recorded in EDGAR during the sample period.10 Online Appendix A.1.1 provides
more details on how we construct our baseline sample.

Table 1 provides the summary statistics of our final baseline sample. On an annual average
basis, there are 3,626 unique browsers and 6,254 unique browsees; a browser views 180 browsees
and a browsee is viewed by 105 browsers. The annual browsing volume is 60 for a browser-browsee
pair. Finally, the browsing volume of a typical browser amounts to 11,356, and the browsing volume
received by a typical browsee is 5,897.

Table 1: EDGAR Browsing Data: Summary Statistics

Mean Median S.D.

No. Browsers per Year 3,626 3,608 251
No. Browsees per Year 6,254 6,280 321
No. Browsees viewd by a Browser per Year 180 176 25
No. Browsers viewing a Browsee per Year 105 74 115
Browsing Volume of a Browser per Year 11,356 9,881 7,764
Browsing Volume received by a Browsee per Year 5,897 5,389 4,869
Browsing Volume per Browser-Browsee pair per Year 60 50 34

Finally, Figure 1 illustrates the bilateral browsing activities at the NAICS 2-digit industry level.
Firms in the finance and insurance industry have the largest browsing volume on other firms, es-
pecially those in the manufacturing industry. Firms in the manufacturing industry also receive the
most attention from the browsers. Online Appendix C provides additional facts on firms’ browsing
activities. In particular, Figure C.1 plots the distribution of total browsing volumes by firms and
industries. Furthermore, we show that a firm browses other firms more intensely and also receives
more browsings if it on average has larger sales and employees, or it is located in a less concentrated
industry.

10It is noteworthy that automated crawling programs are becoming increasingly prevalent in recent years. To accurately
measure firms’ attention, we follow the method in Cao et al. (2023) to exclude IP addresses that browsed disclosures of over
50 companies in a single day or IP addresses that self-identified as bots in their user-agent headers. Our results are also
robust to keeping those IP addresses in the sample.
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Figure 1: Bilateral Browsing at the Industry Level

Agriculture
Mining

Utilities
Construction

Manufacturing

Wholesale Trade
Retail Trade

Transportation

Information

Finance and Insurance

Real Estate
Technical Services

Administrative
EducationHealth CareEntertainment

Accommodation/Food
Other Services

Agriculture
Mining

Utilities
Construction

Manufacturing

Wholesale Trade
Retail Trade

Transportation

Information

Finance and Insurance

Real Estate

Technical Services
Administrative
Education
Health Care
Entertainment
Accommodation/Food
Other Services

Browsers Browsees

Note: This figure plots the bilateral browsing volumes between industries. The width of the bar is proportional to the
browsing volumes. The media companies and financial investment firms are excluded.

The IBES Managerial Forecast Data. The I/B/E/S Managerial Guidance dataset provides public
companies’ quantitative (numerical) managerial forecasts extracted from corporate earnings call tran-
scripts and press releases. Specifically, a firm’s manager makes forecasts on the future realization of
14 variables related to his/her firm’s business activities, such as capital expenditure, dividend per
share, gross margin, etc. In our subsequent analysis, we select and use two variables: the EPS (earning
per share) and sales, as they are most relevant to our topic and are surveyed most frequently, thereby
containing the largest number of observations. We merge companies’ "forecasts" of these two vari-
ables with the IBES Actuals, a dataset that documents the released realization of the corresponding
variables, to calculate the forecast error used in our empirical analysis.11

The Factset Data. Our firm-level supply chain data is compiled using the Factset Revere-Supply
Chain data from WRDS, a comprehensive database that provides detailed information on supply chain
relationships disclosed by public firms, including the information of the supplying firm ("supplier")

11Companies sometimes only provide a forecast range with an upper and lower bound instead of an exact forecast value.
In this case, we use the average of the upper and lower bound as the company’s forecast.
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and the procurer ("customer").12

We extract supply chain relationships in the dataset from 2009 to 2016, with the same time coverage
as the browsing data. The original dataset records firm identifiers of the suppliers/customers, as well
as contract start/end dates. In addition, approximately 11% of customer-supplier relationships report
annual sales to the customer as a share of the supplier’s total revenue that year. The processed dataset
contains 4,260 unique suppliers and 4,518 customers. On average, each supplier reports 7.6 supply
chain contract relationships, and each customer reports 7.55 such relationships in a year. Figure B.5
presents the number of firms and the forged supply chain relationships over time.

The BEA input-Ouput Database and Other Data Sources. The input-output linkages at the industry
level are constructed using the input-output accounts published by the US Bureau of Economic
Analysis (BEA). The BEA provides industry-level supply and use tables for 71 industries annually
and 405 industries every five years. We transform the supply and use table to obtain the input-output
(IO) table, an industry-by-industry matrix whose (𝑖 , 𝑗)th element represents industry 𝑖’s input share
from industry 𝑗. We obtain the annual IO tables for 71 industries from 1997 to 2021 and IO tables for
405 industries in 2007 and 2012. To link industries in the IO table with firms in other data sets, we
employ the concordance between the BEA industry classification and the NAICS industry codes and
map individual firms to BEA industries.

Our analyses make use of several other data sources. We use the Compustat dataset to obtain
standard information on public firms and the firm-level TFP. We utilize the producer price index (PPI)
data published by the Bureau of Labor Statistics (BLS) to calculate the industry-level inflation rates.
We obtain the industry-level TFP from the BEA. The summary statistics for the IO table, industry-level
inflation volatility, sales growth volatility, and TFP volatility are presented in Table B.1 in the Online
Appendix.

2.2 Firm Level Evidence

This section provides empirical evidence at the firm level and offers two novel findings. First, a firm
pays increasingly more attention to those firms that are closer to it —in the supply chain network
sense. Second, a firm raises its attention to another firm when forming a new supplier-customer
relationship. Conversely, a firm reduces its attention to another firm when they break an existing
relationship.

2.2.1 Firms’ Attention Hierarchy

To begin with, we convert the Factset sample into a year-supplier-customer format. Specifically, a
supply chain linkage is considered to exist between firm 𝑖 and firm 𝑗 in year 𝑡 if the date range of the

12The supply chain details in Factset Revere is obtained from public filings and annual/quarterly reports, transcripts of
conference calls with investors and analysts, capital markets presentations, sell-side conferences, and firm press releases
and websites, with public filings being the primary source (Culot et al. (2023)).
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supply-chain relationship record overlaps with year 𝑡.
Next, we construct a network distance measure similar to the one in Carvalho et al. (2021). For

each firm 𝑖 in year 𝑡, all other firms are split into different groups. The "downstream distance 1"
and "upstream distance 1" firms are the direct customers and suppliers of firm 𝑖, respectively. The
"downstream distance 2" firms are customers of firm 𝑖’s downstream distance 1 firms, but they are
not distance 1 firms themselves. Following this recursive procedure, all firms are grouped based on
their distance to firm 𝑖 up to a distance of 4. Firms whose distance to firm 𝑖 exceeds 4 are grouped
together and serve as the control group.

To explore firms’ attention along their supply chain networks, we estimate the following regression
equation:

𝑦𝑖 𝑗𝑡 = 𝛼𝑖𝑡 + 𝛾𝑗𝑡 +
4∑

𝑘=1
𝛽down
𝑘

× Downstream(𝑘)
𝑖 𝑗𝑡

+
4∑

𝑘=1
𝛽

up
𝑘

× Upstream(𝑘)
𝑖 𝑗𝑡

+ 𝜀𝑖 𝑗𝑡 , (2.2)

where log
(
𝑦𝑖 𝑗𝑡

)
is the log browsing volume of firm 𝑖 on firm 𝑗 in year 𝑡, while Downstream(𝑘)

𝑖 𝑗𝑡
and

Upstream(𝑘)
𝑖 𝑗𝑡

are dummy variables indicating if firm 𝑗 is firm 𝑖’s downstream or upstream distance 𝑘

firm, respectively, during year 𝑡. The terms 𝛼𝑖𝑡 and 𝛾𝑗𝑡 denote the firm 𝑖-year fixed effect and the
firm 𝑗-year fixed effect. The coefficients of interest are 𝛽down

𝑘
and 𝛽

up
𝑘

, which measure the differential
browsing volume of firm 𝑖 on firms with downstream and upstream network distance 𝑘 relative to
firms in the control group, respectively.

In Figure 2, the red dots and blue dots illustrate the regression coefficients 𝛽down
𝑘

and 𝛽
up
𝑘

, measuring
firms’ attention hierarchy along the supply chain. Our results reveal two notable patterns. First, a
firm tends to pay more attention to firms that are closer to it. On average, a firm pays about 60% more
attention, as measured by EDGAR browsings, to distance 1 firms than to firms in the control group.
Meanwhile, distance 2 firms receive roughly 10% more attention than those in the control group. The
second pattern is that a firm allocates approximately the same amount of attention to its upstream
suppliers and downstream customers within the same distance.

2.2.2 Sales Shares, Volatility, and Browsing Intensity

A subsample of firms in the Factset dataset provide information on their sales share for each customer.
Leveraging this subsample, we further explore how a firm’s attention paid to a customer varies with
the firm’s sales share to that customer and the customer’s sales or TFP volatility. Specifically, we run
the following regression equation:

𝑦𝑖 𝑗𝑡 = 𝛼𝑖𝑡 + 𝛽1sales_share𝑖 𝑗𝑡 + 𝛽2𝜎𝑗𝑡 + controls𝑗𝑡 + 𝜀𝑖 𝑗𝑡 , (2.3)

where log
(
𝑦𝑖 𝑗𝑡

)
is the log browsing volume of firm 𝑖 on firm 𝑗 in year 𝑡, sales_share𝑖 𝑗𝑡 is defined as the

share of firm 𝑖’s sales to firm 𝑗 as firm 𝑖’s total revenue in year 𝑡, and 𝜎𝑗𝑡 is the standard deviation of
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Figure 2: Firms’ Attention Hierarchy along the Supply Chain
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firm 𝑗’s sales growth/TFP over the past-5 years prior to year 𝑡. Here, 𝛼𝑖𝑡 is the firm-year fixed effect,
and 𝜀𝑖 𝑗𝑡 is the error term. The controls consist of a broad array of time-varying covariates of firm 𝑗.
The coefficients 𝛽1 and 𝛽2 measure how the browsing intensity of firm 𝑖 depends on its sales share to
firm 𝑗 and the sales/TFP volatility of firm 𝑗, respectively.

Table 2 presents the estimates. Column (1) shows that a 10 percent increase in sales share to a
customer leads to a 24.8 percent increase in the supplier’s browsing volume to that customer, holding
the customer’s sales volatility constant. Conditional on the same sales share, when a customer’s sales
volatility increases by one standard deviation (equal to 0.16), the supplier’s browsing volume increases
by 7 percent. Column (4) displays a similar magnitude when we replace customers’ sales volatility
with the TFP volatility. When a customer’s TFP volatility increases by one standard deviation (equal
to 0.12), the supplier’s browsing volume increases by 12.6 percent. Our results continue to hold when
we add the time-varying controls and the firm-year fixed effect to the regression.

2.2.3 Firms’ Attention when Forming/Breaking New/Existing Relationship: Event Studies

How does a firm allocate its attention when it enters a new trading relationship or ends an existing
trading relationship with another firm? We exploit the panel feature of our data and employ event
study methodologies to address this question. Specifically, we estimate the following regression
equation:

𝑦𝑖 𝑗𝑡 =

𝑛∑
𝑘=−𝑚

𝛽𝑘𝐷𝑖 𝑗(𝑡−𝑘) + 𝛼𝑖 + 𝛼 𝑗 + 𝛾𝑡 + 𝜀𝑖 𝑗𝑡 , (2.4)

where 𝑦𝑖 𝑗𝑡 is the log browsing volume of firm 𝑖 on firm 𝑗 in year 𝑡, and 𝐷𝑖 𝑗(𝑡−𝑘) is a dummy variable,
which is equal to one when a supplier and a customer established their trading relationship for the
first time or terminated their relationship for the last time in the Factset dataset. At the same time,

11



Table 2: Browsing Intensity, Sales Share and Volatility (Firm Level)

Browsing Intensity

(1) (2) (3) (4) (5) (6)

Sales Share 2.48*** 2.49*** 1.72** 3.69*** 3.79*** 3.42
(0.21) (0.22) (0.77) (0.41) (0.41) (2.14)

Sales Volatility 0.44*** 0.78*** 0.83*
(0.16) (0.19) (0.48)

TFP Volatility 1.05* 1.79*** 1.33
(0.54) (0.62) (1.23)

Controls ✓ ✓ ✓ ✓
Firm-Year FE ✓ ✓
Adjusted 𝑅2 0.04 0.06 0.56 0.08 0.10 0.67
No. Observations 5154 4916 4916 1131 1106 1106

Note: This table shows how the browsing intensity of a firm depends on its sales share from the downstream
customers, how volatile the customers’ sales are, and how volatile the customers’ TFP is. The control variables
include firm size, age, leverage, fixed costs, stock returns, price-to-cost margins, and cash holdings. Robust
standard errors are in parentheses and clustered by browsing firms. Significance: * 𝑝 < 0.1, ** 𝑝 < 0.05, ***
𝑝 < 0.01

they did not have any trading relationships at least four years prior to the establishment or after the
termination of the contract.

Figure 3 illustrates the estimated coefficients {𝛽𝑘}.13 Two patterns are notable. First, a firm
gradually increases its attention toward its potential trading partner, reaching a peak in the quarter
when the trading contract is signed. Afterward, its attention level remains steady. In contrast, a
firm gradually reduces the attention it pays to the trading partner after the trading relationship ends.
Second, a firm distributes roughly 3% more attention to its supplier or customer when their trading
relationship is active.14

These results, together with our previous findings in Section 2.2.1, provide new insights into
how firms allocate their attention. The primary factor determining firms’ attention allocation is the
distance between firms along the supply chain network. A firm prioritizes its attention towards
potential (direct) suppliers or customers, even if it is currently not actively trading with them, while
paying little attention to firms further down the supply chain. Despite the end of a contract, firms
still closely monitor the activities of their potential suppliers and customers, maintaining almost the
same level of attention as before.

13In the Online Appendix, Figure B.7 shows the estimates of the event when a supplier and a customer form their
relationship for the first time or break it for the last time in the Factset dataset. Figure B.8 shows the estimates with 95
confidence intervals.

14We refer two firms to have an active trading relationship in quarter 𝑡 when 𝑡 falls within the date range of at least a
trading contract recorded in the Factset data.
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Figure 3: Browsing and Trading Relationship: Event Studies
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Note: The figure depicts the log browsings of customers on suppliers (left panel) and suppliers on customers
(right panel) when new trading relationships are formed at period 0. The frequency is quarterly and 90%
confidence intervals are based on clustering at the browser level.

2.2.4 Browsing Intensity and Forecast Accuracy

Everything else equal, do firms forecast more accurately when their total browsings on other firms
are greater? To assess this relationship, we adopt the following baseline empirical specification:

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽
𝑡∑

𝑘=𝑡−𝑛
𝑏𝑟𝑜𝑤𝑠𝑖𝑛𝑔𝑖𝑘 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑡 + 𝜂𝑡 + 𝜀𝑖𝑡 .

Denote the variable being forecast as 𝑥𝑖𝑇 , whose actual value will be revealed at day𝑇, and the forecast
made by firm 𝑖 at day 𝑡 as 𝑥̂𝑖𝑡 , where 𝑡 < 𝑇. The forecast error is defined as 𝑦𝑖𝑡 = (𝑥̂𝑖𝑡 − 𝑥𝑖𝑇)/𝑥𝑖𝑇 ,
and the forecast horizon is defined as 𝑇 − 𝑡. We focus on two scenarios where 𝑥𝑖𝑇 is either firms’
earnings per share (EPS) or sales, as discussed in Section 2.1. The variable of interest is denoted as∑𝑡

𝑘=𝑡−𝑛 𝑏𝑟𝑜𝑤𝑠𝑖𝑛𝑔𝑖𝑘 , the log total browsing 𝑛 days prior to day 𝑡 when firm 𝑖 makes the forecast. In our
baseline specification, we set 𝑛 = 90, approximately three months before firms making their forecasts.
The firm fixed effect and time fixed effect are denoted as 𝛼𝑖 and 𝜂𝑡 , respectively.

Table 3 presents our baseline results. The dependent variable for the first three columns is
firms’ forecast error on their earning per share (EPS). Column (1) shows that when firms’ browsing
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intensity increases by 50%, their forecast error reduces by 2.75 percentage points. This effect is
substantial given that the median forecast error is 7.8%. Column (2) shows that this result continues
to hold after controlling for a wide arrays of firm-level time-varying covariates. To address the
concern that aggregate shocks could lead to simultaneous movements in firms’ forecast error and
their browsing intensity, column (3) adds time fixed effect to our regression. We see little change
in the estimates. Finally, we include firm fixed effect to additionally control for unobserved time-
invariant firm heterogeneity. The point estimate continues to remain economically and statistically
significant. We may cautiously interpret this estimate as implying a causal relationship, as by adding
the time and firm fixed effects, we are essentially demonstrating that a firm forecasts more accurately
when it browses other firms more intensively 90 days prior to the forecast. In the Online Appendix
Table B.4, we demonstrate that our results continue to hold when days prior to the forecast are set to
30 or 180. Estimates of forecast errors on sales display similar results, as shown in column (5)-(8), but
with smaller magnitude.

Table 3: Browsing Intensity and Forecast Accuracy

Forecast Error

Earnings Per Share Sales

(1) (2) (3) (4) (5) (6)

Browsing Intensity -0.055*** -0.052*** -0.032** -0.0020*** -0.0013* -0.0017***
(0.0082) (0.0067) (0.0097) (0.00055) (0.00057) (0.00036)

Controls ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓
Adjusted 𝑅2 0.01 0.10 0.25 0.04 0.15 0.42
No. Observations 7359 7076 6722 8329 7994 7607

Note: Standard errors are in parentheses and are clustered at industry level. This table shows how firms’
forecast accuracy is associated with firms’ browsing intensity in the past 90 days prior to making the forecast.
The variables for firm controls include firm size, age, leverage, cash holdings, return on assets (ROA), fixed
costs, stock returns, price cost margin and R&D intensity. Significance: * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

2.3 Sectoral Level Evidence

We begin by examining the relationship between firms’ browsing intensity and their input-output
linkages. We show that a firm browses an industry more intensively when they allocate more
expenditures to or gather more revenues from that industry. Firms also pay more attention to the
industry with greater volatility of inflation, conditional on firms’ expenditure share from and sales
share to those industries.

We construct the annual industry-to-industry bilateral browsings by aggregating the daily firm-
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to-firm bilateral browsings. We then estimate the following regression equation:

𝑦𝑖 𝑗𝑡 = 𝛼𝑖𝑡 + 𝛽1input_share𝑖 𝑗𝑡 + 𝛽2sales_share𝑖 𝑗𝑡 + 𝛽3𝜎𝑗𝑡 + controls𝑗𝑡 + 𝜀𝑖 𝑗𝑡 , (2.5)

where 𝑦𝑖 𝑗𝑡 is the log browsing volume of sector 𝑖 on sector 𝑗 at year 𝑡, and input_share𝑖 𝑗𝑡 is defined
as industry 𝑖’s expenditure on goods produced by sector 𝑗 as a fraction of its total expenditures on
intermediate inputs in year 𝑡:

input_share𝑖 𝑗𝑡 = expenditure𝑖 𝑗𝑡/total_expenditure𝑖𝑡 .

Similarly, sales_share𝑖 𝑗𝑡 is sector 𝑖’s sales to sector 𝑗 as a share of its total revenue, 𝜎𝑗𝑡 is the
standard deviation of sector 𝑗’s annualized monthly inflation rate at year 𝑡, and 𝜀𝑖 𝑗𝑡 is the error term.
All regressions include the industry-year fixed effect 𝛼𝑖𝑡 , which absorbs any industry-year-specific
factors that affect industry 𝑖’s browsing activity. Additionally, this fixed effect helps to address the
possibility of spurious correlation due to industry-specific trends or common shocks to industries’
browsings and the variables of interest. We further control for a list of potential industry 𝑗-year 𝑡

confounding factors by adding time-varying covariates such as total revenues, total value added,
and the share of intermediate inputs, etc. The coefficient 𝛽1, 𝛽2 and 𝛽3 measure how the browsing
intensity of firms in industry 𝑖 depend on their input share from industry 𝑗, sales share to industry
𝑗 and inflation volatility of industry 𝑗, respectively. These coefficients are likely to reflect conditional
correlations rather than causal relationships, as firms’ browsing volumes and the variables of interest
are possibly endogenous, affected by other unobserved factors that we fail to control for.

Table 4 presents the main results. Column (1) to column (4) present results based on the annual
71-sector IO tables. Column (1) shows that a one standard deviation increase in the input share
input_share𝑖 𝑗𝑡 , which is equal to 4 percentage points, is associated with 28 percent increase of industry
𝑖’s browsing on industry 𝑗, when sector 𝑗 is an upstream sector of sector 𝑖. This implies that, for
example, firms browse 56% more intensively on industries at the 95th percentile of their input share
than those industries at the 5th percentile. This number is 62.2% for the sales share, a similar
magnitude as the input share.15. Column (5) to column (6) show coefficients with comparable (while
a bit greater) magnitude for results based on the 405-sector IO tables.

We next shift our focus to estimating the relationship between a firm’s browsing and the sales
volatility of firms in its upstream and downstream sectors. Results in column (3) (column (8)) suggest
that a one standard deviation increase in sector 𝑗’s inflation volatility, corresponding to 9% (13%),
leads to 25.6% (5.3%) increase in industry 𝑖’s browsing volume on industry 𝑗 for the 71-sector (405-
sector) case. These results are little changed when industry 𝑖’s input share and sales share on industry
𝑗 are controlled for, as shown in column (4) and column (8). For robustness, in column (5) and column
(10), we redefine the dependent variable as browser 𝑖’s browsing volume on browsee 𝑗 as a fraction of

15These positive relationships are illustrated in Figure B.1 in the Online Appendix
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browser 𝑖’s total browsing volume, 𝑦𝑖 𝑗𝑡 = 𝑏𝑖 𝑗𝑡/
∑

𝑗 𝑏𝑖 𝑗𝑡 , where 𝑏𝑖 𝑗𝑡 is given by equation (2.1). Our results
are qualitatively unaffected.

In addition, Table B.3 in the Online Appendix shows that there exists positive relationship between
firms’ browsing volume and sectoral inflation volatility or sectoral TFP volatility of their upstream
and downstream sectors. We estimate the same equation as in (2.5) except that 𝜎𝑗𝑡 denotes inflation
or TFP volatility.

Table 4: Browsing Intensity and Input-Output Linkages

Browsing Intensity
71 Sectors 405 Sectors

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Input Share 7.00*** 5.32*** 0.34*** 11.9*** 8.98*** 0.23***
(0.97) (0.96) (0.75) (0.84) (0.79) (0.02)

Sales Share 6.77*** 4.99*** 0.33*** 11.5*** 9.72*** 0.34***
(0.85) (0.80) (0.06) (0.88) (0.80) (0.02)

Sales Volatility 2.84*** 2.84*** 0.027** 0.40*** 0.41*** 0.002***
(0.26) (0.23) (0.013) (0.034) (0.032) (0.0009)

Industry Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry-Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adjusted 𝑅2 0.79 0.79 0.79 0.81 0.18 0.67 0.67 0.67 0.68 0.23
No. Observations 26216 26216 26216 26216 25280 344298 344298 342296 309238 342176

Note: This table shows how the browsing intensity of an industry depends on its input share from the upstream
sectors, the sales share from the downstream sectors, and how volatile the other sectors’ inflation rates are. The control
variables include average firm size, age, leverage, cash holdings, return on assets(ROA), fixed costs, stock returns,
price cost margin, R&D intensity, Domar weight, total value added, total inputs and expenditure share of intermediate
inputs. Robust standard errors are in paraentheses and clustered by industry. Significance: * 𝑝 < 0.1, ** 𝑝 < 0.05, ***
𝑝 < 0.01

Additional Evidence using Text-based Attention Measure. We supplement our empirical results
in this section with the attention measure constructed using the Natural Language Processing (NLP)
technique. Specifically, we compile a dictionary containing unique words that could best describe
each industry at the 3-digit NAICS level. For each firm 𝑘 in industry 𝑖 in year 𝑡, we count how many
times its annual 10-K document mentions an industry 𝑗, denoted as 𝑎𝑖 𝑗𝑡(𝑘), based on the dictionary we
have built. Aggregating the number of mentions within industry 𝑖, we obtain a measure of industry
𝑖’s attention towards industry 𝑗, expressed as 𝑎𝑖 𝑗𝑡 =

∑
𝑘∈𝑖 𝑎𝑖 𝑗𝑡(𝑘), and therefore construct an annual

sequence of attention-allocation matrices across industries. Online Appendix A.2 provides more
details on how we construct this measure.

We revisit our empirical results using this text-based attention measure and demonstrate that our
findings continue to hold. In fact, the correlation between the text-based and the browsing-based
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attention measure is 0.32.16 Table 5 shows that the results are consistent with our previous findings
using browsing-based attention measure, both qualitatively and quantitatively.

Table 5: Text-based Attention and Input-Output Linkages

Text-based Attention

(1) (2) (3) (4) (5) (6) (7) (8)

Input Share 3.07*** 2.09*** 2.15*** 2.16***
(0.42) (0.42) (0.41) (0.40)

Sales Share 3.23*** 2.51*** 2.51*** 2.49***
(0.31) (0.33) (0.30) (0.30)

Inflation Volatility 1.02*** 0.98***
(0.049) (0.047)

Sales Volatility 2.12*** 2.10***
(0.073) (0.069)

TFP Volatility 4.32*** 4.26***
(0.20) (0.17)

Industry Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry-Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adjusted 𝑅2 0.77 0.77 0.77 0.78 0.77 0.78 0.77 0.78
No. Observations 36684 36684 32347 32347 36684 36684 36684 36684

Note: This table shows how an industry’s text-based attention depends on its input share from the upstream
sectors, the sales share from the downstream sectors, and how volatile the other sectors’ inflation rates, sales
and TFP are. Robust standard errors are in paraentheses and clustered by industry. Significance: * 𝑝 < 0.1, **
𝑝 < 0.05, *** 𝑝 < 0.01

3. Theory

In this section, we present the baseline model that connects with the empirical findings. Our frame-
work builds on La’O and Tahbaz-Salehi (2022), and there is an important difference: firms actively
choose their signals and the information structure is endogenously determined. We will characterize
how firms’ attention allocation and aggregate outcomes are jointly determined in equilibrium and
how they are shaped by different policy rules.

Throughout, we use small letter 𝑥𝑡 to denote a variable 𝑋𝑡 ’s log-deviation from its steady state.

16To calculate this correlation, at the industry level within each browser-year cell, we first calculate the correlation
between the text-based and browsing-based attention measure. We then calculate the average over browser-year cells.
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3.1 Setup

Firms. The economy is comprised of 𝑁 sectors indexed by 𝑖 and 𝑗, and each sector consists of a
continuum of firms indexed by 𝜄. Firms in the same sector operate the same constant returns to scale
production technology

𝑌𝑖 ,𝜄,𝑡 = 𝑍𝑖 ,𝑡𝐿
𝛼𝑖

𝑖 ,𝜄,𝑡

𝑁∏
𝑗=1

𝑋
𝑎𝑖 𝑗

𝑖 ,𝜄, 𝑗 ,𝑡 ,

where 𝑍𝑖 ,𝑡 is the technology shock in sector 𝑖

𝑧𝑖 ,𝑡 ≡ log𝑍𝑖 ,𝑡 ∼ 𝒩(0, 𝜎2
𝑖 ),

𝐿𝑖 ,𝜄,𝑡 is the labor input, and 𝑋𝑖 ,𝜄, 𝑗 ,𝑡 is the intermediate input from sector 𝑗. The parameter 𝛼𝑖 measures
the relative importance of labor, and 𝑎𝑖 𝑗 measures the relative importance of intermediate inputs. The
production network is therefore captured by the input-output matrix with elements defined by 𝑎𝑖 𝑗 .
The covariance matrix of sectoral shocks is diagonal: 𝚺𝑧 = diag

(
{𝜎2

𝑖
}𝑁
𝑖=1

)
≻ 0.

Within a sector, each firm 𝜄 produces a different variety. The aggregate goods in sector 𝑖 is given
by the standard Dixit-Stiglitz aggregator with a constant elasticity of substitution 𝜃𝑖 , which yields a
downward-sloping demand schedule

𝑌𝑖 ,𝑡 =

[∫
𝑌

𝜃𝑖−1
𝜃𝑖

𝑖 ,𝜄,𝑡 𝑑𝜄

] 𝜃𝑖
𝜃𝑖−1

, 𝑌𝑖 ,𝜄,𝑡 =

(
𝑃𝑖 ,𝜄,𝑡

𝑃𝑖 ,𝑡

)−𝜃𝑖

𝑌𝑖 ,𝑡 .

In each period, there are two stages. In the first stage, firms post their prices potentially under in-
complete information about the realization of sectoral technology shocks. They can acquire additional
information beyond their prior, but this is a costly process. In the second stage, all the shocks realize
and information becomes public. Firms then make their hiring and intermediate inputs decision to
cater for the demand.

In the second stage, given the wage rate𝑊𝑡 and the vector of sectoral goods price {𝑃𝑗𝑡}, the nominal
marginal cost of a firm in sector 𝑖 is

MC𝑖𝑡 =
1
𝑍𝑖𝑡

𝑊
𝛼𝑖

𝑡

𝑁∏
𝑗=1

𝑃
𝑎𝑖 𝑗

𝑗𝑡
.

In the first stage, anticipating the marginal cost process and the demand schedule, firms’ pricing
and information acquisition problem is

max
𝑃𝑖 ,𝜄,𝑡 ,x𝑖 ,𝜄,𝑡

E

[ (
𝑃𝑖 ,𝜄,𝑡

𝑃𝑖 ,𝑡

)−𝜃𝑖

𝑌𝑖 ,𝑡

(
(1 + 𝜏𝑖)𝑃𝑖 ,𝜄,𝑡 − MC𝑖 ,𝑡

) ���� x𝑖 ,𝜄,𝑡

]
− ℱ𝑖(x𝑖 ,𝜄,𝑡). (3.1)

where 𝜏𝑖 = 1
𝜃𝑖−1 is a standard subsidy rate that eliminates the price markup at the steady state.

18



Crucially, when setting the price 𝑃𝑖 ,𝜄,𝑡 , firms do not observe the sectoral productivity shocks yet and
therefore they have to form expectations about the marginal cost. Meanwhile, firms are rationally
inattentive. They can actively acquire additional signals x𝑖 ,𝜄,𝑡 subject to some information acquisition
costs denoted by ℱ𝑖(x𝑖 ,𝜄,𝑡), in the spirit of Sims (2003). In Subsection 3.2, we will specify the details of
the cost function.

Crucially, as the information acquisition decision is determined in equilibrium, the implied price
rigidity is endogenous to the general equilibrium effects and to the government policy. With in-
complete information, firms’ pricing decision will differ from that under perfect information. The
allocation in the second stage may not be efficient due to that the average price level may underreact or
overreact to shocks and that the cross-sectional relative price movements may be distorted. This leaves
room for policy intervention via the aforementioned endogenous information acquisition channel.

Households. There is a representative consumer who maximizes her utility under perfect informa-
tion

max
𝐶𝑡 ,𝐿𝑡

𝐶
1−𝛾
𝑡

1 − 𝛾
−

𝐿
1+ 1

𝜂

𝑡

1 + 1
𝜂

,

subject to

𝑃𝑡𝐶𝑡 ≤ 𝑊𝑡𝐿𝑡 +Π𝑡 + 𝑇𝑡 , and 𝑃𝑡𝐶𝑡 ≤ 𝑀𝑡 .

In the consumers’ problem, 𝛾 determines the income effects and 𝜂 corresponds to the Frisch elasticity.
Consumers total expenditure has to be financed by the sum of labor income, firms’ total profit (Π𝑡),
and government transfer (𝑇𝑡). In addition, consumers also need to respect the Cash-in-Advance (CIA)
constraint: their total nominal expenditure cannot be larger than the exogenous money supply 𝑀𝑡 .
The final consumption goods 𝐶𝑡 and the final goods price 𝑃𝑡 are given by the following aggregators:

𝐶𝑡 =

∏
𝑖

𝐶
𝛽𝑖
𝑖𝑡
, 𝑃𝑡 =

𝑁∏
𝑖=1

𝑃
𝛽𝑖
𝑖𝑡
,

where 𝛽𝑖 represents the expenditure share in goods from sector 𝑖.
Taking prices and wage rate as given, the optimal labor supply condition is given by

𝑊𝑡

𝑃𝑡
𝐶
−𝛾
𝑡 = 𝐿

1
𝜂

𝑡 . (3.2)

Monetary policy. We assume that the monetary authority is not subject to informtional frictions
and can commit to the following monetary policy rule

𝑚𝑡 = log 𝑀𝑡 =

𝑁∑
𝑗=1

𝜓 𝑗𝑧 𝑗 ,𝑡 .
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After prices have been set and all shocks have realized, the nominal wage will adjust one-to-one with
the money supply 𝑚𝑡 so that the CIA constraint is satisfied. Therefore, by varying the responsiveness
to sectoral shocks, the policymaker can influence the processes of sectoral marginal costs, which in
turn affects firms’ endogenous price response in equilibrium.

3.2 Endogenous Information Acquisition

Frictionless benchmark. Consider momentarily the frictionless benchmark, in which case there
is no information acquisition cost and firms can perfectly observe all the underlying shocks. The
solution to firms’ problem (3.1) then takes a particular simple form: the sectoral price is identical
to the nominal marginal cost 𝑃𝑖 ,𝜄,𝑡 = 𝑃𝑖𝑡 = MC𝑖𝑡 . In terms of log-deviation from steady state, the
marginal cost in sector 𝑖 is given by

mc𝑖𝑡 = −𝑧𝑖𝑡 + 𝛼𝑖𝑤𝑡 +
∑
𝑗

𝑎𝑖 𝑗𝑝 𝑗𝑡 . (3.3)

Solving for the vector of sectoral prices thus leads to the following characterization.

Proposition 3.1. In absence of information acquisition cost,

1. The equilibrium price responses relies on the standard Leontief inverse matrix

p∗𝑡 = L(−z𝑡 +α𝑤𝑡), with L = (I − A)−1 , (3.4)

where the (𝑖 , 𝑗)-th element of A is 𝑎𝑖 𝑗 and α ≡
[
𝛼1 , . . . , 𝛼𝑁

] ′
.

2. The equilibrium output change is independent of money supply

𝑐∗𝑡 =
1 + 𝜂

𝛾 + 𝜂

∑
𝑖

𝜆𝑖𝑧𝑖 ,𝑡 ,

where 𝜆𝑖 =
∑

𝑗 𝐿𝑖 𝑗𝛽 𝑗 is the steady-state Domar weight of sector 𝑖.

This proposition provides the ideal price response function under perfect information. The
familiar Leontief inverse summarizes the impact of production network on firms’ price setting. As
expected, when prices are flexible, the monetary policy is irrelevant and the standard Hulten’s theorem
applies in determining the real allocation.

Elastic attention. Now we specify the details of firms’ information acquisition problem. Instead of
observing the nominal marginal cost perfectly, firms need to form expectation about it. The nominal
marginal costs depend on the vector of sectoral productivity shocks z𝑡 , and firms have to allocate
limited capacity in learning about these underlying states. In our baseline analysis, we adopt the
elastic attention approach (Maćkowiak et al., 2023), where the marginal cost in reducing uncertainty
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measured in mutual information is constant. The following lemma first transforms the original
problem (3.1) into a tracking problem.

Lemma 3.1. Under a quadratic approximation, firms’ problem with elastic attention can be written as

max
𝑝𝑖 ,𝜄,𝑡 ,H𝑖 ,V𝑖

− 1
2𝜆𝑖𝜃𝑖E

[ (
𝑝𝑖 ,𝜄,𝑡 − mc𝑖𝑡

)2
]
− 𝜒𝑖I ((z𝑡 ;x𝑖𝜄𝑡 |Σz)

subject to

𝑝𝑖 ,𝜄,𝑡 = E[mc𝑖𝑡 |x𝑖 ,𝜄,𝑡],

I (z𝑡 ;x𝑖 ,𝜄,𝑡) =
1
2

(
log det𝚺𝑧 − log det𝚺𝑧|𝑥

)
,

x𝑖 ,𝜄,𝑡 = H𝑖z𝑡 + u𝑖 ,𝜄,𝑡 , u𝑖 ,𝜄,𝑡 ∼ N(0,V𝑖).

Lemma 3.1 illustrates the basic tradeoff faced by firms when choosing the information set: more ac-
curate signals reduce the pricing error, but it incurs additional information acquisition cost. Here,𝜆𝑖 is
sector 𝑖’s steady-state Domar weight which controls the benefit of additional information, and 𝜒𝑖 is the
constant marginal cost when reducing mutual information between states and signals I ((z𝑡 ;x𝑖𝜄𝑡 |Σz).

In principle, firms can choose multiple signals that contains arbitrary combinations of the under-
lying states and idiosyncratic noises (parameterized by H𝑖 and V𝑖). However, based on the technique
developed in Miao et al. (2022), the optimal signal structure takes a rather simple form, as shown in
the the following proposition.

Proposition 3.2. For any linear laws of motion of the aggregate variables, the optimal signal structure satisfies

1. When 𝜒𝑖 < 𝜆𝑖𝜃𝑖V(mc𝑖𝑡), where V(mc𝑖𝑡) denotes the volatility of sector 𝑖’s marginal cost, firms acquire a
single signal about the marginal cost

𝑥𝑖 ,𝜄,𝑡 = mc𝑖𝑡 + 𝑢𝑖 ,𝜄,𝑡 , 𝑢𝑖 ,𝜄,𝑡 ∼ N(0, 𝜈2
𝑖 )

where mc𝑖𝑡 satisfies condition (3.3) and the variance of the private noise 𝜈2
𝑖

is given by

𝜈2
𝑖 =

𝜒𝑖V(mc𝑖𝑡)
𝜆𝑖𝜃𝑖V(mc𝑖𝑡) − 𝜒𝑖

.

2. When 𝜒𝑖 ≥ 𝜆𝑖𝜃𝑖V(mc𝑖𝑡), firms acquire no new information.

The optimal signal structure is quite intuitive: firms choose to obtain a noisy version of their ideal
price change and the noise level is increasing in the marginal cost 𝜒𝑖 . A couple of remarks are in order.
First, the laws of motion of the nominal marginal costs as a function of the underlying states z𝑡 are
equilibrium objects, taken as given by individual firms with rational expectations. Consequently, the
extent to which firms learn about different sector’s productivity hinges on the processes of marginal
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costs. Second, the precision of the signal is increasing in the volatility of the marginal costs, and
therefore, are also endogenous to the general equilibrium and monetary policy rule.

With the optimal signal structure derived in Proposition 3.2, firms set their prices according to
the expected marginal costs 𝑝𝑖 ,𝜄,𝑡 = E[mc𝑖𝑡 |𝑥𝑖 ,𝜄,𝑡]. Standard Bayesian inference directly implies the
following pricing formula after averaging out idiosyncratic noises.

Corollary 3.1. At the sectoral level, the optimal pricing strategy with elastic attention is given by

𝑝𝑖 ,𝑡 =

∫
𝑝𝑖 ,𝜄,𝑡𝑑𝜄 = 𝜇𝑖 mc𝑖𝑡 , where 𝜇𝑖 ≡ 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)
∈ [0, 1]. (3.5)

The variable 𝜇𝑖 shapes the price rigidity: a higher 𝜇𝑖 implies greater responsiveness to variations
in nominal marginal costs and therefore smaller nominal rigidity. Note that 𝜇𝑖 inherits the property
of the precision of optimal signals, and is increasing in the variance of the nominal marginal costs
as well.17 This property is in contrast with some commonly used alternative information structure
which we discuss next.

Alternative information acquisition specifications. We consider two alternative specifications for
information acquisition. The first one is the case firms face a fixed information capacity constraint
when collecting information (Sims, 2003; Maćkowiak and Wiederholt, 2009). This corresponds to
setting 𝜒𝑖 = 0 in Lemma 3.1 while requiring

I (z𝑡 ;x𝑖 ,𝜄,𝑡) ≤ 𝛿𝑖 ,

where 𝛿𝑖 is some exogenous parameter that determines the maximum capacity a firm can choose to
reduce faced uncertainty.

The second alternative is the exogenous information approach where the signal structure and
its precision are exogenously determined. Particularly, we consider the specification as in La’O and
Tahbaz-Salehi (2022), in which firms in sector 𝑖 observe a vector of signals about z𝑡

𝑥𝑖 ,𝜄, 𝑗 ,𝑡 = 𝑧 𝑗 ,𝑡 + 𝑢𝑖 ,𝜄, 𝑗 ,𝑡 , 𝑢𝑖 ,𝜄,𝑡 ∼ N(0, 𝜏𝑖𝜎2
𝑗 ).

Notice that when inferring productivities in different sectors, firms face the same signal-to-noise ratio
controlled by the exogenous parameter 𝜏𝑖 .

It turns out that both of these two alternatives yield observational equivalent pricing strategy as
our baseline elastic attention case.

Proposition 3.3. With alternative information structures, the optimal pricing strategy is

𝑝𝑖 ,𝑡 = 𝜇𝑖 mc𝑖𝑡 ,

17In Proposition F.1 of Appendix F, we formally establish the equivalence between firms’ total attention and the nominal
rigidity 𝜇𝑖 .
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where 𝜇𝑖 = 1 − 𝑒−2𝛿𝑖 with fixed information capacity and 𝜇𝑖 =
1

1+𝜏𝑖 with exogenous information.18

It is worth noting that though the pricing formula in these alternatives resembles that from
the elastic attention approach, the implied price rigidity 𝜇𝑖 in both cases are determined only by
exogenously parameters and are independent of equilibrium outcomes or the monetary policy. In
Section 5, we will provide further evidence that helps select the relevant approach in acquiring
information.

3.3 Equilibrium

We start with the definition of equilibrium in the linearized economy.

Definition 1. A competitive equilibrium consists a policy rule for the money supply 𝑚𝑡 , the wage rate 𝑤𝑡 , the
sectoral price vector p𝑡 =

[
𝑝1,𝑡 , . . . , 𝑝𝑁,𝑡

] ′
, and the consumption and labor allocation {𝑐𝑡 , ℓ𝑡}, such that

1. Consumers’ optimal labor supply condition (3.2) is satisfied.

2. CIA constraint is satisfied: 𝑐𝑡 +
∑

𝑖 𝛽𝑖𝑝𝑖 ,𝑡 = 𝑚𝑡

3. Firms choose prices and information optimally so that condition (3.5) is satisfied.

The key to understand the equilibrium outcomes is firms’ pricing strategy. Once sectoral prices
are determined, the total output 𝑐𝑡 can be obtained via the CIA constraint. Thanks to Corollary 3.1,
the optimal signal structure permits a compact characterization of the influence matrix.

Proposition 3.4. Given a law of motion of the nominal wage 𝑤𝑡 = κz𝑡 =
∑

𝑗 𝜅 𝑗𝑧 𝑗 ,𝑡 , the price rigidities {𝜇𝑖}𝑁𝑖=1
solve the following fixed-point problem

𝜇𝑖 = 𝒯𝑖(µ,κ) = 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)
, and V(mc𝑖 ,𝑡) =




e𝑖(I − Aµ)−1(−I +ακ)𝚺
1
2
𝑧




2
, (3.6)

where µ = diag(𝜇1 , . . . , 𝜇𝑁 ) is a diagonal matrix of nominal rigidities and 𝒯𝑖(µ,κ) is attention best response
function for firms in sector 𝑖. e𝑖 denotes 𝑖th standard basis (row) vector in R𝑁 .

Proposition 3.4 highlights the endogeneity of price rigidities. Firms’ choice of 𝜇𝑖 not only depends
on the volatilities of underlying shocks (𝚺𝑧), but also depends on other firms’ information acquisition
decision and the wage function. Intuitively, when firms in sector 𝑗 acquire more information, their
prices become more responsive to underlying shocks, which in turn increases the volatility of the
marginal costs via production network linkages. As a result, it provides incentive for firms in sector
𝑖 to also acquire more information. In contrast, when firms face fixed information capacity constraint
or when information is exogenous, 𝜇𝑖 becomes constant and the aforementioned feedback effect is

18In this paper we adopt natural logarithm log in computing the Shannon entropy, and the unit of information is called
a "nat." The usual base for logarithm in the entropy formula is 2 , in which case the unit of information is a "bit." Adopting
natural logs simplifies the algebra without changing any of our results.
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muted. Meanwhile, the process of marginal cost also depends on how the nominal wage responds to
different shocks, which translates into firms’ information acquisition decision. These considerations
are summarized in the best response function 𝒯𝑖(µ,κ), an object we will revisit when exploring the
optimal policy design.19

Given the price rigidities µ and the wage function κ, the sectoral prices and the aggregate output
gap can be derived accordingly.

Corollary 3.2. 1. The influence matrix of prices ϕ is

p𝑡 = ϕz𝑡 = (I − µA)−1µ(−I +ακ)z𝑡 . (3.7)

2. The output gap is given by

𝑐𝑡 − 𝑐∗𝑡 = − 𝜂

1 + 𝛾𝜂

∑
𝑖

𝛽𝑖𝑒𝑖 ,𝑡 , (3.8)

where 𝑒𝑖𝑡 ≡ 𝑝𝑖 ,𝑡 − 𝑝∗
𝑖 ,𝑡

is the average pricing error in sector 𝑖 relative to the perfect-information benchmark

e𝑡 = Q (L − 1κ) z𝑡 . (3.9)

where Q = (I − µA)−1(I − µ) , and L = (I − A)−1 is the Leontief inverse with perfect information

Relative to the frictionless benchmark (3.4), the influence matrix of prices (3.7) is akin to a modified
Leontief inverse where the network matrix A is dampened by µ. This dampening matrix generates
both sluggish response of prices and across-sectors distortion, which leaves room for policy interven-
tion.

The highly-nonlinear equilibrium system characterized in Proposition 3.4 and 3.6 does not admits
closed-form solution in general. Additionally, multiple equilibria is also a pervasive phenomenon in
this types of models with endogenous information acquisition and strategic complementarity (Hell-
wig and Veldkamp, 2009). Equilibrium multiplicity invalidates the use of comparative statics methods
to analyze the impact of parameter perturbations on equilibrium outcomes; it also complicates welfare
and policy analysis. To address this problem, we present the following proposition that guarantees
equilibrium uniqueness.

Proposition 3.5. There exists a unique fixed pointµ that satisfies condition (3.6) if for each sector 𝑖 = 1, 2, ....𝑁 ,

1. The monetary policy accommodate a wage rule that satisfies 𝜅𝑖 < 1;

19In Appendix F , we present a special example with closed-form characterizations, which further clarifies the dependence
of sectoral nominal rigidities and endogenous feedbacks of attentions on model primitives (A,𝚺z ,κ) . In particular, we
show that a sector’s nominal rigidity (attention) is increasing in its shock volatility and its relative importance as a supplier
—- two salient predictions that are captured in our quantitative analysis.
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2. The information cost 𝜒𝑖 satisfies 0 < 𝜒𝑖 < 𝜃𝑖𝜆𝑖 min
{
𝜎2
𝑖
(1 − 𝜘𝑖𝜅𝑖)2 , 𝜎4

𝑖
(1 − 𝜘𝑖𝜅𝑖)4 (2𝜍𝑖)−1} . Denote

𝚪 = −I +ακ, and the auxiliary parameters {𝜘𝑖} and {𝜍𝑖} are defined as

𝜘𝑖 =

{
1, 0 ≤ 𝜅𝑖 < 1

𝛼𝑖 , 𝑘𝑖 < 0
, and 𝜍𝑖 = tr

(
L
��𝚪𝚺𝑧𝚪′

��L′e′𝑖e𝑖LA
)
.

Proposition 3.5 provides a set of sufficient conditions that ensures equilibrium existence and
uniqueness. The proof of this result utilizes the Kellogg’s Fixed Point Theorem in Banach spaces
(Kellogg, 1976). 20 We believe that technical strategy we adopt to derive these results has its inde-
pendent value in methodology. In particular, it can be applied to other high-dimensional models of
endogenous information frictions when establishing existence and uniqueness properties.

Finally, we provide the condition that relates the wage rate with the money supply.

Proposition 3.6. In an equilibrium, the monetary supply and the wage rate jointly satisfy

𝑚𝑡 =
𝜂

1 + 𝛾𝜂
𝑤𝑡 +

(
1 − 𝜂

1 + 𝛾𝜂

) ∑
𝑖

𝛽𝑖𝑝𝑖 ,𝑡 +
1

1 + 𝛾𝜂

∑
𝑖

𝜆𝑖𝑧𝑖 ,𝑡 .

That is, in an equilibrium, the monetary authority can alternatively chooses the wage function κ,
obtain the price function via the mapping (3.6), and derive the corresponding monetary policy rule
afterwards. This is the strategy we follow when solving for the optimal policy.

3.4 Attention Allocation

In this subsection, we discuss how firms in equilibrium allocate their limited attention to different
sectors. In Section 2, we measure firms’ attention on different sectors by their browsing activities.
To connect with this moment in our theoretical framework, we first define the attention allocation to
different sectors as a normalized reduction in uncertainty about sectoral fundamentals.

Definition 2. Define the attention from firms in sector 𝑖’s on productivity in sector 𝑗 as

𝜔𝑖 𝑗 =

𝜎2
𝑗
− 𝜎̂2

𝑗|𝑖

𝜎2
𝑗

, (3.10)

where 𝜎̂2
𝑗|𝑖 = E

[ (
E[𝑧 𝑗 ,𝑡 |𝑥𝑖 ,𝜄,𝑡] − 𝑧 𝑗 ,𝑡

)2 |𝑥𝑖 ,𝜄,𝑡
]

is the posterior variance conditional on the chosen signals.

An increase of 𝜔𝑖 𝑗 implies that firms in sector 𝑖 is better informed about sector 𝑗’s productivity.
That is, more attention is allocated to learning about sector 𝑗’s conditions. Recall that firms’ optimally
choose their signal structure to be the nominal marginal costs with noises. As a result, to which extent
their signals reveal the fundamentals about the underlying states in different sectors depends on the

20In Appendix D, we also provide a more general and less restrictive conditions that can be used in our quantitative and
policy analysis.
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endogenous exposure of marginal costs to shocks in different sectors. The following proposition
highlights how such attention allocation hinges on both the primitive shocks and equilibrium forces.

Proposition 3.7. The attention allocation satisfies

𝜔𝑖 𝑗 = 𝜇𝑖

𝜎2
𝑗
𝜙2
𝑖 𝑗∑

𝑘 𝜎
2
𝑘
𝜙2
𝑖𝑘

and
∑
𝑗

𝜔𝑖 𝑗 = 𝜇𝑖 ,

where 𝜙𝑖 𝑗 is the element of the influence matrix ϕ.

To unpack this proposition, first note that the total attention in sector 𝑖 equals to the price re-
sponsiveness 𝜇𝑖 . Second, to understand the allocation of attention across sectors, we leverage the
equilibrium condition (3.5) that relates prices and marginal costs and the price influence matrix

mc𝑖𝑡 =
1
𝜇𝑖

𝑝𝑖𝑡 =
1
𝜇𝑖

∑
𝑗

𝜙𝑖 𝑗𝑧 𝑗𝑡 .

Recall that the marginal cost is driven by firms’ own productivity shocks, the wage rate, and prices
in different sectors, which are functions of the underlying states z𝑡 . In equilibrium, these forces
are summarized by the influence matrix ϕ and the informativeness of firms’ signals about sector 𝑗’s
condition is determined by the volatility of 𝜙𝑖 𝑗𝑧 𝑗𝑡 . A higher volatility of 𝑧 𝑗𝑡 therefore amplifies its
relative importance in firms’ signals, which shifts the attention to sector 𝑗. Meanwhile, 𝜙𝑖 𝑗 captures the
general equilibrium exposure of mc𝑖𝑡 to 𝑧 𝑗𝑡 . When such exposure intensifies, the relative importance
of sector 𝑗’s component endogenously looms larger.

From the monetary authority’s perspective, the design of monetary policy has an impact on both
a firm’s total attention acquired as well as the relative attention allocation across sectors. In the next
section, we characterize the optimal monetary policy rule when internalizing its effects on firms’
attention and implied price rigidity.

4. Optimal Monetary Policy with Endogenous Attention

In Section 3, we characterize how equilibrium sectoral attentions are determined by network input-
output linkages and the volatilities of sectoral shocks. We also establish the attention linkages among
sectors driven by strategic complementarity in information acquisition. In light of these results, in
this section we study the optimal monetary policy in our model with endogenous attention and
expectations.

4.1 Central Bank’s Optimization Problem

The welfare loss in our model economy is caused by price errors due to incomplete information.
Similar to La’O and Tahbaz-Salehi (2022), the following lemma decomposes the welfare loss into three
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components which are different functions of price errors.

Lemma 4.1. The second-order approximation to the expected welfare loss is

𝐿 =
1
2

[(
𝛾 + 1

𝜂

)
V(𝑐𝑡 − 𝑐∗𝑡) +

𝑁∑
𝑖=0

𝜆𝑖𝒞𝑖 +
𝑁∑
𝑖=1

𝜆𝑖𝜃𝑖𝒟𝑖

]
(4.1)

where the cross-sector price error dispersion is

𝒞𝑖 = E


∑
𝑗=1

𝑎𝑖 𝑗𝑒
2
𝑗𝑡 −

©­«
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑒 𝑗𝑡
ª®¬

2 𝒞0 = E


𝑛∑
𝑗=1

𝛽 𝑗𝑒
2
𝑗𝑡 −

©­«
𝑛∑
𝑗=1

𝛽 𝑗𝑒 𝑗𝑡
ª®¬

2 ,
and the within-sector price dispersion 𝒟𝑖 is

𝒟𝑖 = E
[∫ 1

0
(𝑝𝑖 ,𝜄,𝑡 − 𝑝𝑖𝑡)2𝑑𝜄

]
= 𝜇2

𝑖 𝜈
2
𝑖 .

The first component of welfare loss corresponds to the variance of the output gap. This part
is only related to a weighted average of sectoral pricing errors according to condition (3.8) Note
that eliminating the output gap volatility only requires the average pricing error remains constant,∑

𝑗 𝛽 𝑗𝑒 𝑗𝑡 = 0. This is the insight developed in Rubbo.
The second component corresponds to the cross-sector price error dispersion. Even when the

aggregate output gap volatility is muted, the sector-specific pricing errors can still be present. These
pricing errors will in turn lead to relative movements among different sectors that are inefficient from
the planner’s perspective.

The third component corresponds to the within-sector price dispersion. Even when the average
prices at the sectoral level match those without informational frictions, idiosyncratic noises in firms’
signals still generate inefficient cross-sectional dispersion. The magnitude of such dispersion depends
on both the variance of idiosyncratic noises 𝜈2

𝑖
and firms’ responsiveness to signals 𝜇𝑖 . In our

environment, these two objectives are jointly determined and 𝜈2
𝑖

can be expressed as a function of 𝜇2
𝑖

via condition (3.5).
According to condition (3.9), the sectoral pricing errors are functions of the price rigidity µ and

the wage function κ, which is a property that also inherited by the output gap volatility and the
cross-sector price error dispersion in the social welfare loss function. Also recall that for each wage
function, there exists a monetary policy rule that supports it as an equilibrium. As a result, it is
sufficient to consider the following policy design problem.

Lemma 4.2. The optimal policy solves the following problem

min
k

𝐿 =
1
2

[(
𝛾 + 1

𝜂

)
β′𝚺𝑒β + λ′ diag(𝚺𝑒) − λ′ diag (A𝚺𝑒A′) − β′𝚺𝑒β + χ′µ𝑣

]
,
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where Σ𝑒 = Q (L − 1κ)𝚺𝑧 (L − 1κ)′ Q′ ⪰ 0 is the covariance matrix of the cross-sectional average of sectoral
pricing errors, and µ solves the fixed point problem defined in Proposition 3.4, µ𝑣 = diag (µ) is the vector of
sectoral nominal rigidities.

This optimal policy problem in our model incorporates two novel ingredients, relative to the
existing literature. First, price flexibilities µ are endogenous to the general equilibrium of the choice
of the monetary policy, the policymaker possesses an extra policy dimension of influencing the
equilibrium attention/price flexibilities, which creates policy room for managing expectations. This
channel is absent in models with exogenous information frictions where price rigidities are exogenous
and invariant to the policy choice.

Second, the expectation management interacts with input-output linkages. The attention choices
in different sectors are interdependent through the structure of the marginal cost processes. The
policymaker faces a non-trivial problem of designating price flexibilities across sectors, taking into
account the relation between the sectoral distribution of attentions and the production network.

4.2 Optimal Policy with Expectation Management

Conceptually, with elastic attention, variations in the policy instrument κ influence the social welfare
via two channels: the first is the exogenous channel when holding firms’ attentions/rigidity µ
constant, and the second is the endogenous attention channel allowing responses of µ to policy
changes. The first-order condition with respect to κ naturally yields this decomposition

𝑑𝐿

𝑑κ
=

𝜕𝐿

𝜕κ︸︷︷︸
exogenous chanel

+ 𝜕𝐿

𝜕µ

𝑑µ

𝑑κ︸ ︷︷ ︸
attention channel

= 0. (4.2)

With exogenous information, fixed information capacity, or Calvo type pricing frictions, only the
exogenous channel 𝜕𝐿

𝜕κ is at work as the implied nominal rigidity is invariant to policy changes or
general equilibrium. What is unique in our setting is that the choice of 𝜇𝑖 in each sector responds to
both the monetary policy κ and to other sectors’ attention choices {𝜇𝑗} via general equilibrium forces.
In what follows, we will spell out the details of the attention response 𝑑µ

𝑑κ , the welfare exposure 𝜕𝐿
𝜕µ ,

and finally the formula of the optional monetary policy.

Exogenous channel. As a benchmark, we first discuss the case where only the exogenous channel
is at work. In fact, due to the equivalence result provided in Proposition 3.3, setting 𝜕𝐿

𝜕κ = 0 leads to
the same optimal monetary policy as that in an environment with exogenous information or fixed
information capacity. The following proposition provides the characterization of such optimal policy.

Proposition 4.1. With fixed information capacity or exogenous information, the optimal monetary policy is
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identical and can be implemented via a price stabilization policy∑
𝑖=1

𝜑𝑥
𝑖 𝑝𝑖𝑡 = 0, (4.3)

where the sectoral weights given by

𝜑𝑥
𝑖 =

[ (
1 − 𝜌0

)
(𝛾 + 1/𝜂)𝜆𝑖︸        ︷︷        ︸

output gap

+
𝑁∑
𝑗=1

(
1 − 𝜇𝑖

)
𝜆 𝑗𝜌 𝑗 𝑙 𝑗𝑖 +

(
𝜌0 − 𝜌𝑖

)
𝜆𝑖︸                                     ︷︷                                     ︸

cross-sector dispersion

+ 𝜇𝑖𝜆𝑖𝜃𝑖𝜌𝑖︸    ︷︷    ︸
within-sector dispersion

] (
1
𝜇𝑖

− 1
)
, (4.4)

and 𝜌𝑖 for 𝑖 = 1, . . . , 𝑁 and 𝜌0 are given by

𝜌𝑖 = e𝑖(I − Aµ)−1α, 𝜌0 =

∑
𝑖

𝛽𝑖𝜇𝑖𝜌𝑖 .

This optimal policy rule is identical to that in La’O and Tahbaz-Salehi (2022) with exogenous
signals, and it turns out that the same rule also applies to the economy with fixed information
capacity. While the signal structures in these two economies are substantially different, they are
nevertheless equivalent in the eyes of the policymaker. The three terms in (4.4) addresses the three
different inefficiencies in the policymaker’s objective function (4.1), respectively.

The weight on each sector not only depends on the Domar weight, but also depends on its inter-
action between sectoral rigidities captured by 𝜌𝑖 . In La’O and Tahbaz-Salehi (2022), 𝜌𝑖 is interpreted
as the upstream price flexibility of sector 𝑖, and this measure will also show up in the endogenous
component of the policy rule when allowing the attention channel.

Attention response to policy change. Importantly, when deriving the formula (4.4), sectoral at-
tentions or nominal rigidities {𝜇𝑖} are taken as exogenously determined. Now we allow them to be
chosen by firms. Recall from Proposition 3.4, firms attention choices are characterized by a fixed-point
problem, and their best response 𝒯 (µ,κ) hinges on all other firms’ decisions and the wage function. A
change in the wage function directly translates into changes in the marginal cost processes in different
sectors. Due to the network linkages, firms’ attention choices are also interconnected and have to be
jointly determined. The following proposition formalizes these considerations.

Proposition 4.2. Given the attention best response 𝒯 (µ,κ), the impact of changes in monetary policy κ on
equilibrium attention µ21 are given by an 𝑁 × 𝑁 matrix

𝑑µ𝑣

𝑑κ
=

[
I − 𝒯µ𝑣

]−1 𝒯κ , (4.5)

21Since µ is a diagonal matrix, we focus on its diagonal vector to ease the algebra of matrix calculus.
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where the associated Jacobian matrices of derivatives admit the following representations

𝒯κ = 2 diag
{

1 − 𝜇𝑖

V(mc𝑖𝑡)

} [
COV(mc𝑡 , z𝑡) ⊙

(
(I − Aµ)−1α1′

) ]
, (4.6)

𝒯µ𝑣 = 2 diag
{

1 − 𝜇𝑖

V(mc𝑖𝑡)

} [
COV(mc𝑡 ,mc𝑡) ⊙

(
(I − Aµ)−1A

) ]
, (4.7)

where ⊙ denotes the Hadamard product and COV denotes the covariance operator.

In Proposition 4.2, the (𝑖 , 𝑗) elements of matrices 𝒯𝑘 and 𝒯µ𝑣 measure the marginal effects of
changing policy instrument 𝜅 𝑗 and sector 𝑗’s attention 𝜇𝑗 on an individual firm’s attention in sector 𝑖,
respectively. The matrix

[
I − 𝒯µ𝑣

]−1 𝒯κ then encodes all the general equilibrium consideration when
allowing firms to internalize that all other firms’ attention choice will further adjust according to their
attention best response functions.

To unpack the results, consider first the (𝑖 , 𝑗) element of 𝒯𝑘 , which is given by

𝜕𝒯𝑖(µ,κ)
𝜕𝜅 𝑗

=
1 − 𝜇𝑖

V(mc𝑖𝑡)
Cov(mc𝑖𝑡 , 𝑧 𝑗𝑡)𝜌𝑖 . (4.8)

This formula summarizes how a different wage response to 𝑧 𝑗𝑡 affects firms’ attention choice 𝜇𝑖 via
altering the variance of the marginal cost. The first term, 1−𝜇𝑖

V(mc𝑖𝑡 ) , captures the variability of sector
𝑖’s attention. As 𝜇𝑖 approaches 1, it becomes increasingly difficult to influence its attention choice.
The second term, Cov(mc𝑖𝑡 , 𝑧 𝑗𝑡), corresponds to the exposure of the marginal cost to the sectoral
productivity shock. The last term, 𝜌𝑖 = e𝑖(I−Aµ)−1α, measures the importance of such wage change
from a network perspective. Note that even holding other firms µ unchanged, a different wage
function still implies different price dynamics in different sectors, while 𝜌𝑖 in turn summarizes the
consideration of these changes for a firm in sector 𝑖.

In the same vein, the (𝑖 , 𝑗) element of 𝒯µ𝑣 can be written as

𝜕𝒯𝑖(µ,κ)
𝜕𝜇𝑗

=
1 − 𝜇𝑖

V(mc𝑖𝑡)
Cov(mc𝑖𝑡 ,mc𝑗𝑡)ℎ𝑖 𝑗 . (4.9)

Different from the case for 𝜅 𝑗 , a marginal change in 𝜇𝑗 modifies the response of firms in sector 𝑗 to
all shocks. The exposure to such change for firms in sector 𝑖 is effectively the covariance between
their marginal costs, Cov(mc𝑖𝑡 ,mc𝑗𝑡). Since the price dynamics of all other sectors will also adjust
given that 𝑝 𝑗𝑡 is different, firms in sector 𝑖 also need to adjust accordingly. Parallel to the last term in
condition (4.8), the importance of such network effects is measured by ℎ𝑖 𝑗 , which is the (𝑖 , 𝑗) element
of (I − Aµ)−1A.

So far, the discussion of conditions (4.8) and (4.9) remains at the partial equilibrium level, as
it holds other firms’ attention choices unchanged. In general equilibrium, once sector 𝑖’s attention
choice changes, it will induce endogenous response of all other sectors’ attention choices, which in
turn will lead to another round of attention modification, and so on. This infinite order of general
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equilibrium reasoning can be summarized by the matrix expansion of
[
I − 𝒯µ𝑣

]−1 𝒯κ[
I − 𝒯µ𝑣

]−1 𝒯κ = 𝒯κ + 𝒯µ𝑣𝒯κ + (𝒯µ𝑣 )2𝒯κ + (𝒯µ𝑣 )3𝒯κ + . . . . (4.10)

Different from the logic of the standard Leontief inverse expansion, (I − A)−1, condition (4.10) in-
corporates two two novel ingredients of the model: (i) the attention choices are endogenous to both
shock volatility and government policy; (ii) the attention linkages hinges on production networks due
to general equilibrium feedbacks and strategic complementarity in information acquisition. These
features not only provide an endogenous account of observed heterogeneity in sectoral browsing ac-
tivities, they also point to a novel feedbacks between endogenous rigidities and optimal policy which
we explore in the sequel.

Optimal monetary policy. In the first-order condition (4.2), the impact of endogenous attention
channel also depends on the welfare exposure to attention variation, 𝜕𝐿

𝜕µ . The following lemma
provides the necessary formula.

Lemma 4.3. The welfare exposure to sectoral attention changes is

𝜕𝐿

𝜕(µ𝑣)′
= r𝑜 + r𝑐 + r𝑑 . (4.11)

Denote M = (I−A)−1 (µ − I)V(mc𝑡), whereV(mc𝑡) ⪰ 0 denotes the covariance matrix of the sectoral marginal
costs. The 1 × 𝑁 vectors r𝑜 , r𝑐 , and r𝑑 are given by

r𝑜 =
1

𝛾 + 1/𝜂 (β′M) ⊙
(
β′(I − µA)−1) ,

r𝑐 = λ′ [M ⊙ (I − µA)−1] − λ′ [(AM) ⊙
(
A(I − µA)−1) ] − r𝑜 ,

r𝑑 =
1
2χ

′.

Here, the vector r𝑜 represents the impact through the output gap volatility, r𝑐 through the cross-
sector pricing error dispersion, and r𝑑 through the within-sector pricing error dispersion.

Now we are ready to characterize the optimal monetary policy rule. Due to that the endogenous
attention is the fixed point of the best response 𝒯 (µ,κ), the solution to the first-order condition (4.2) is
highly non-linear. Despite of this difficulty, the optimal policy still admit a compact price stabilization
representation.

Proposition 4.3. The optimal monetary policy can be implemented by a price-stabilization policy of the form

𝑁∑
𝑖=1

𝜑𝑖𝑝𝑖𝑡 = 0, with 𝜑𝑖 = 𝜑𝑥
𝑖 + 𝜑𝑒

𝑖 , (4.12)
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where 𝜑𝑒
𝑖

represents the weight due to endogenous attention given by

𝜑𝑒
𝑖 =

{
2


𝑁∑
𝑗=1

(
𝑟𝑜𝑗 + 𝑟𝑐𝑗 + 𝑟𝑑𝑗

)
[I − 𝒯µ𝑣 ]−1

𝑖 𝑗

 − (𝜆𝑖𝜃𝑖V (mc𝑖𝑡) − 𝜒𝑖)
}
𝜌𝑖

𝜇𝑖

1 − 𝜇𝑖

V(mc𝑖𝑡)
, (4.13)

and 𝜑𝑥
𝑖

given by (4.4) represents the weight when holding the attention constant.

The endogenous component of the policy rule (4.13) highlights the role of expectation management
and network structure. The weight on a sector𝜑𝑒

𝑖
depends on the welfare exposures to price flexibilities

(r) in all other sectors with their importance adjusted by elements in the matrix [I − 𝒯µ𝑣 ]−1, showing
that the policemaker internalizes strategic complementarity in firms’ attention choices in the network
setting. Meanwhile, the weight also inversely depends on the volatility of sectoral marginal costs,
V(mc𝑖𝑡), which happens as the price flexiblities is no longer an exogenous parameter but depends
on the equilibrium dynamics. Lastly, the term (𝜆𝑖𝜃𝑖V (mc𝑖𝑡) − 𝜒𝑖) corrects the discrepancy between
elastic and fixed information capacity.

Meanwhile, what hidden from the this formula is the endogenous price flexibilities µ induced by
the optimal policy. Given the policy rule φ, the corresponding nominal wage function 𝑤𝑡 = κz𝑡 can
be constructed as

κ ∝ φ(I − µA)−1µ, subject to κα = 1. (4.14)

Recall that in the best response function, 𝜇𝑖 = 𝒯𝑖(µ,κ), firms’ attention allocation hinges on the per-
ceived wage function. While under the optimal monetary policy, the wage function is also determined
by the attention allocation as in (4.14). The feedback between different policy rules and firms’ active
information acquisition decisions will lead to different equilibrium price rigidities, an aspect that is
missing in an environment with exogenous information or fixed information capacity. Next, we will
explore the properties of the implied price

4.3 Policy Induced Rigidity: Understanding the Mechanism

In this subsection, we study implications of optimal policy design on firms’ attention and implied
nominal rigidity. We proceed by exploring three exercises where each time the policymaker minimizes
only one of the three components in the social loss function (4.1). We will show that relative to
the exogenous-information or fixed information capacity economy, the optimal policy with elastic
attention induce actually more nominal rigidity.

Minimizing output gap volatility. We start with the case in which the central bank only attempts to
resolve welfare losses associated with the inefficient output-gap volatility. Surprisingly, the optimal
policy rule in this case takes a particularly simple form as presented in the following proposition.
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Proposition 4.4. When minimizing only the output gap volatility, the optimal policy weight becomes

𝜑𝑖 =

(
1 − 𝜌0

)
(𝛾 + 1/𝜂)𝜆𝑖

(
1
𝜇𝑖

− 1
)
. (4.15)

if at the optimum, the output-gap volatility is completely stabilized , V
(
𝑐𝑡 − 𝑐∗𝑡

)
= 0.

Notice that when only minimizing the output gap, if the output-gap volatility is completely
stabilized , V

(
𝑐𝑡 − 𝑐∗𝑡

)
= 0, the optimal policy rule with exogenous information and elastic attention

coincides with each other.22 The price stabilization rule requires to eliminate the aggregate pricing
error,

∑
𝑗 𝛽 𝑗𝑒 𝑗𝑡 = 0, which implies that the welfare exposure vector r𝑜 = 0 and the endogenous

component 𝜑𝑒
𝑖
= 0. This envelop-type result significantly simplifies the exposition.23 However, this

result by no means suggests that the equilibrium allocation is the same under elastic attention versus
alternative information structures. Note that under elastic attention, 𝜇𝑖 in condition (4.15) still needs
to be determined endogenously, while it is determinedly in an exogenous way with either fixed
information capacity or exogenous information.

Particularly, suppose we start with the exogenous-information case with a vector of {𝜇𝑖}. Formula
(4.15) says that it is optimal to put more weight to stabilize sectors with smaller 𝜇𝑖 or more rigidity.
As a result, the volatility of 𝑝𝑖𝑡 in the more rigid sector tends to be smaller. If sector 𝑖 uses their own
sector’s products intensively as intermediate inputs (which is the case empirically), the volatility of
the marginal cost mc𝑖𝑡 will be lower as well. Now let us switch to our baseline environment with
elastic attention: with a less volatile marginal cost, sector 𝑖 tends to pay less attention and adopts an
even smaller 𝜇𝑖 , which further encourages policymaker to put more weight on sector 𝑖 according to
formula (4.15). This feedback effects between the optimal policy and firms’ information acquisition
best response creates a reinforcing channel that endogenously amplifies nominal rigidities.

Minimizing within-sector dispersion. The same logic also applies if the policymaker only tries
to minimize the within-sector dispersion component in the welfare loss function. With this single
objective, the sum of the endogenous and exogenous component in the price stabilizing rule also
leads to a much simpler formula.

Proposition 4.5. When minimizing only the within-sector dispersion, the optimal policy weight becomes

𝜑𝑖 =
©­«

𝑁∑
𝑗=1

𝜒𝑗ℛ𝑗𝑖
ª®¬

𝜌𝑖

V(mc𝑖𝑡)

(
1
𝜇𝑖

− 1
)

(4.16)

where ℛ𝑗𝑖 is elements of the matrix
[
I − 𝒯µ𝑣

]−1.

22In our quantitative analysis, we find the optimal OG policy indeed satisfies this condition under model calibration.
23Note that when the planner is simultaneously reducing the cross-sector or within-sector pricing error dispersion,

r𝑜 = 0 ceases to be the case.
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Fixing the information acquisition complementarity matrix ℛ, a lower 𝜇𝑖 or less volatile marginal
cost implies translates into a larger weight in sector 𝑖. More stabilized price in sector 𝑖 further reduces
𝜇𝑖 andV(mc𝑖𝑡) through endogenous attention choice. As a result, the policy-attention feedback points
to the same implication on the implied nominal rigidities.24

Also recall from Proposition 4.1, with exogenous information or fixed information capacity, the
policy weight is 𝜑𝑖 = 𝜆𝑖𝜃𝑖𝜌𝑖(1 − 𝜇𝑖). This policy rule also implies a higher weight on more rigid
sectors. Differently, there is no further modification of 𝜇𝑖 resulting from a higher 𝜑𝑖 .

Minimizing cross-sector dispersion. Lastly, if the policymaker only aims to eliminate the cross-
sector dispersion, the only way is to encourage all firms to pay full attention, (𝜇𝑖 = 1), so that the
sectoral pricing errors vanish. One way to achieve this goal is to set the monetary policy in a way
such that the wage function exhibit extremely large response to all shocks, which results in extremely
large volatility of sectoral marginal costs. Consequently, there is no longer an interior solution to the
optimal policy problem, and the price stabilization rule fails to hold.

It is useful to note that though the cross-sector dispersion term alone will lead to a corner solution,
when simultaneously considering all the three terms in objective (4.1) permits an interior solution. As
we will show in the next section, the first two terms are dominating forces quantitatively in shaping
the optimal monetary policy and most intuition can be obtained by inspecting the two special cases
characterized by Proposition 4.4 and 4.5.

4.4 An Illustrating Example

To further illustrate the interaction between endogenous rigidities and optimal monetary policy, we
consider an economy where all sectors are identical except for the volatility of productivity shocks.
For simplicity, we abstract from the use of intermediate goods and assume that labor is the only
production input. As a result, the nominal marginal cost in sector 𝑖 is

mc𝑖𝑡 = −𝑧𝑖𝑡 + 𝑤𝑡 ,

and firms’ attention is given by 𝜇𝑖 = 1− 𝜒
𝜃𝜆V(mc𝑖𝑡 ) . If the monetary policy implies a wage rule κ that is

independent of firms’ attention choice, then the sectoral rigidity dispersion will be pinned down by
the volatility of productivity shocks and any strategic interactions among firms will be muted. One
example of such symmetric and exogenous policy is that 𝜅𝑖 =

1
𝑁 . However, this is not the case under

the optimal monetary policy.
For simplicity, we focus on the special case where the policymaker only aims to minimize the ag-

gregate output gap. Applying Proposition 4.4, the weight in the price stabilization rule is proportional
to the inverse of sectoral attention, 𝜑𝑖 ∝ 1

𝜇𝑖
− 1. By condition (4.14), this monetary policy rule implies

24In our quantitative exercise in Section 5, we verify this intuition in our calibrated model.
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the following nominal wage function that is endogenous to the sectoral rigidities, 𝜅𝑖 =
1−𝜇𝑖∑
𝑗(1−𝜇𝑗) .

25

Therefore, combining the best response of firms’ attention choices and the policy minimizing the
output gap leads to the following policy-induced fixed-point problem

𝜇𝑖 = 1 − 𝜒
𝜃𝜆

1
(1 − 𝜅𝑖)2𝜎2

𝑖
+∑

𝑗≠𝑖 𝜅
2
𝑗
𝜎2
𝑗

, (4.17)

𝜅𝑖 =
1 − 𝜇𝑖∑
𝑗(1 − 𝜇𝑗)

. (4.18)

First assume momentarily that the wage function is symmetric across sectors, 𝜅𝑖 =
1
𝑁 . When a

sector 𝑖 is with a relatively low productivity volatility (small 𝜎2
𝑖
), the volatility of their marginal cost

is also relatively low, which implies firms in this sector have less incentive to acquire information and
therefore choose a smaller 𝜇𝑖 according to (4.17). Next, we allow the wage function to respond to
sectoral rigidities. According to (4.18), a smaller 𝜇𝑖 due to lower 𝜎2

𝑖
now implies more policy emphasis

or relatively large 𝜑𝑖 and 𝜅𝑖 , which in turn further reduces the volatility of sector 𝑖’s marginal costs
and incentivizes firms to pay even less attention. On the other hand, the sectors with volatility
productivity shocks will end up paying even more attention with smaller 𝜑𝑖 and 𝜅𝑖 . The feedbacks
between firms optimal attention allocation and the monetary policy reinforce each other and amplify
the dispersion of sectoral rigidities.
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Figure 4: Optimal Policy Induced Rigidity Dispersion

To visualize the aforementioned mechanism, we divide the sectors into two groups: the volatility
of productivity shocks in the first 𝑚 sectors is lower than that of remaining 𝑚 sectors, 𝜎2

𝐿
< 𝜎2

𝐻
. With

the exogenous wage function 𝜅𝑖 =
1
𝑁 , the rigidities are pinned down by the shock volatility in their

own sector. The broken blue line in Figure 4 represents the level of attention in the low volatility
sectors (𝜇𝐸𝑥𝑜

𝐿
), while the red line represents the level of attention in the high volatility sectors (𝜇𝐸𝑥𝑜

𝐻
).

When switching to the output gap minimizing policy, the dashed blue and red lines represent the
25This is obtained by using condition (4.14) with A = 0 and 𝛼𝑖 = 𝛼 = 1 in our example.
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new equilibrium level of attention allocation ( 𝜇𝑂𝑃
𝐿

and 𝜇𝑂𝑃
𝐻

). Note that 𝜇𝑂𝑃
𝐿

< 𝜇
𝐸𝑥𝑝

𝐿
and 𝜇𝑂𝑃

𝐻
> 𝜇

𝐸𝑥𝑝

𝐻
,

which underscores the additional dispersion of sectoral rigidities with optimal monetary policy.
Furthermore, the solid blue and red lines illustrate the working of the fixed-point system (4.17)

and (4.18). For example, the solid blue line shows that when holding 𝜇𝐻 at its equilibrium level
𝜇𝑂𝑃
𝐻

, a perceived 𝜇𝐿 in the monetary policy function (4.18) maps to the actual attention choice 𝜇𝐿 in
(4.17). The fixed-point is then located at the cross with the 45 degree line. Similarly, the red solid line
represents the mapping for high volatility sectors holding 𝜇𝐿 = 𝜇𝑂𝑃

𝐿
. In either case, the fixed-point

mapping pushes the endogenous rigidity further away from each other.

5. Quantification

In this section, we provide a quantitative account of the theory. We show that the calibrated model is
capable of replicating salient patterns of attention allocation as in firms’ browsing activities. The model
also predicts a positive correlation between sectoral price flexibility and sectoral shock volatility, which
helps distinguish with alternative information structures. As anticipated in the previous subsection,
we compare the optimal policy rule with that under exogenous information and quantify the effects
of policy induced dispersion of endogenous price rigidities.

5.1 Calibration

The model is calibrated at a quarterly frequency. The parameters calibrated externally are based
on conventional values in the literature. The elasticity of intertemporal substitution 𝛾 is set to 1.
The Frisch elasticity 𝜂 is calibrated to be 2. To achieve an average markup of 20%, the elasticity of
substitution between goods within a sector 𝜃 is chosen to be 6. There are also a set of parameters that
can be obtained directly from data. The elements in the production network matrix 𝑎𝑖 𝑗 and the final
goods shares 𝛽𝑖 are computed base on the input-output table from BEA. The volatilities of sector-level
productivity shocks are calibrated using the BEA/BLS Integrated Industry-Level Production Account
(ILPA).

The calibration of the information acquisition costs 𝜒𝑖 is more unique in our setting. There are
two challenges involving the choice of this set of parameters. First, most variables in the model such
as price flexibilities are endogenous to policy. Therefore, the internal calibration requires us to take a
stand on the monetary policy rule when bring the model to the data. As a baseline, we assume that
the current monetary authority employs a CPI price stabilization rule, that is,∑

𝑖

𝜑𝑖𝑝𝑖𝑡 = 0, with 𝜑𝑖 =
1
𝛽𝑖
.

We also explore alternative monetary policy rules, and the main results are robust to these alternatives.
Second, there are a large number of parameters to be determined as 𝜒𝑖 is sector specific. Motivated
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by condition (3.6), we allow 𝜒𝑖 to depend on 𝜆𝑖 and 𝜎𝑖 in a flexible way and impose the following
parsimonious functional form

log 𝜒𝑖 = 𝛿0 + 𝛿1 log𝜆𝑖 + 𝛿2 log 𝜎𝑖 .

We calibrate the parameters 𝛿0, 𝛿1 and 𝛿2 to match the distribution of adjusted forecast errors of earnings
per share (EPS) at the sector level, which are directly related to the informational frictions.26 We choose
EPS as our target because it provides a significantly larger number of observations compared to other
forecasted variables in the IBES, allowing us to aggregate the forecast error at the sector level with
small standard errors. Particularly, we target the mean level of the forecast error, the 25 percetile and
75 perticle of the forecast error in the sectoral distribution. Table 6 lists the calibrated parameters.

Table 6: Calibrated Parameters

Param. Value Source Related to

Exogenously determined parameters

𝛾 1 — income elasticity
𝜂 2 — Frisch elasticity
𝜃 6 20% markup elasticity of substitution
𝑎𝑖 𝑗 BEA input-output matrix
𝜎𝑖 KLEMS productivity shock volatility

Endogenously determined parameters

𝛿0 0.30 sectoral forecast error of EPS information acquisition cost
𝛿1 0.71 sectoral forecast error of EPS information acquisition cost
𝛿2 1.60 sectoral forecast error of EPS information acquisition cost

As shown in Table 7, though not directly targeted, our model matches the distribution of the
implied price-change frequency reasonably well. The model yields similar amount of sectoral price
rigidities as the data at different percentiles.

5.2 Model v.s. Data: Attention, Volatility, and Price Flexibility

In this subsection, we compare various aspects of the calibrated model predictions with their data
counterparts and illustrate the role of endogenous information acquisition.

26Specifically, we choose 𝛿0, 𝛿1 and 𝛿2 to minimize the following loss function,

min
𝛿0 ,𝛿1 ,𝛿2

(
FE𝑒𝑝𝑠,𝑑𝑎𝑡𝑎

𝑖=25% − FE𝑒𝑝𝑠,𝑚𝑜𝑑𝑒𝑙

𝑖=25%

)2
+

(
𝑁∑
𝑖=1

1
𝑁

FE𝑒𝑝𝑠,𝑑𝑎𝑡𝑎

𝑖
−

𝑁∑
𝑖=1

1
𝑁

FE𝑒𝑝𝑠,𝑚𝑜𝑑𝑒𝑙

𝑖

)2

+
(
FE𝑒𝑝𝑠,𝑑𝑎𝑡𝑎

𝑖=75% − FE𝑒𝑝𝑠,𝑚𝑜𝑑𝑒𝑙

𝑖=75%

)2
,

, where 𝐹𝐸𝑖 is the mean absolute forecast error of sector 𝑖. However, the volatility of EPS differs in the data and in the
model. To ensure that the forecast error is comparable, we normalize it by the volatility of EPS, both in the data and in the
model.

37



Table 7: Model Fit: Forecast Error and Price-Change Frequency

Moment Forecast Error Frequency

Data Model Data Model

Moments targeted
Mean 0.28 0.27
25th percentile 0.20 0.22
75 percentile 0.33 0.33
Moments not targeted
Mean 0.23 0.24
Standard deviation 0.12 0.08 0.13 0.11
10th percentile 0.13 0.18 0.12 0.12
25th percentile 0.14 0.16
50th percentile 0.26 0.27 0.19 0.23
75 percentile 0.29 0.30
90 percentile 0.48 0.36 0.36 0.39

Attention allocation. As documented in Section 2, a salient feature of firms’ browsing activities is
that they are positively associated with both the input-output linkages and sectoral shock volatilites.
In our model, firms acquire signals about their nominal marginal costs, which are informativeness
about the underlying sectoral shocks. To see to which extent our model can replicate the empirical
regularity, we leverage Definition 2, where the attention allocated to a sector 𝑗 from sector 𝑖, 𝜔𝑖 𝑗 ,
is measured by the reduction of posterior uncertainty of sector 𝑖’s productivity shock relative to its
prior. Consistent with the empirical specification (2.5), we run the following regression with model
generated data

𝜔𝑖 𝑗 = 𝛼𝑖 + 𝛽1 input_share𝑖 𝑗 + 𝛽2 sales_share𝑖 𝑗 + 𝛽3 sales_volatility𝑗 + 𝜀𝑖 𝑗 .

Different from its empirical counter, the model is stationary and the independent variables are time
invariant.

Table 8 displays the regression coefficients. The model yields a qualitatively similar pattern as that
in the data (Table 4 column (5)): the percentage reduction of uncertainty about a sector is positively
related with the sectoral sales volatility and bilateral trade linkages. This is much anticipated based
on Proposition 3.7, which states that 𝜔𝑖 𝑗 is determined by the product of equilibrium exposure of
sector 𝑖’s price to sector 𝑗’s shock and the shock volatility in sector 𝑗. This pattern underscores the
importance of the endogeneity of firms’ information acquisition choice. For example, with exogenous
information such as La’O and Tahbaz-Salehi (2022), though firms in different sectors face different
degrees of information frictions, the attention of a firm is allocated in a uniform way across sectors,
that is, 𝜔𝑖 𝑗 = 𝜔𝑖𝑘 .
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Table 8: Attention Allocation: Sectoral-Level Regression

Regression Coefficient

input share sales share volatility

Data 0.34*** 0.33*** 0.03***
(0.07) (0.06) (0.01)

Model 1.28*** 0.62*** 0.07***
(0.05) (0.03) (0.02)

Price flexibility and shock volatility. Another important implication of the endogenous information
acquisition channel is that the implied price flexibilities are directly connected with the underlying
shock volatilities. This feature is absent in models with Calvo-type frictions or exogenous informa-
tion frictions, in which case the price flexibilities are exogenously determined and independent of
fundamentals.

Figure 5: Frequency and Volatility

Figure 5 explores such connection in both the data and our calibrated model. Each dot in the figure
represents a sector’s own productivity shock volatility and its frequency of price adjustment. The red
ones show that in the data, a higher shock volatility is associated with greater price flexibility. The blue
ones display the same relationship in the model. Though our calibration predicts a higher frequency
of price adjustment on average as discussed in previous subsection, it yields a positive relationship
with a similar slope. The reason for this pattern is straightforward: condition (3.5) predicts that the
price flexibility is increasing in the volatility of the marginal cost, and the own productivity shock is
quantitatively important in driving the marginal cost.
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Figure 6: Optimal Monetary Policy Rule

5.3 Allocation under Optimal Monetary Policy

With the calibrated model, we now quantify the effects of endogenous information acquisition in
shaping the optimal monetary policy and the policy-induced price flexibilities.

We start with the comparison of the monetary policy rule with elastic attention in our base-
line model with that under exogenous information and fixed information capacity. To make these
economies comparable with each other, we invoke Proposition 3.3 and set the maximum mutual
information capacity {𝛿𝑖} and the variance of noise {𝜏𝑖} so that the implied price flexibilities {𝜇𝑖} are
identical to that in our baseline calibration with elastic attention and CPI price stabilization. Due to
Proposition 4.1, the optimal monetary policy rule with exogenous information coincides that with
fixed information capacity, and we will only refer to the exogenous information case when making
comparison with our baseline model.

Figure 6 displays the sectoral weights under the optimal price stabilization rule, both of which are
normalized so that they sum to one. The beige bars represent the weights with exogenous information
according to Proposition 4.1, where the informational friction is independent of the policy. The blue
bars represent the weights in our baseline model with elastic attention according to Proposition 4.3,
where the policy weights contains the additional component due to the additional expectation man-
agement motive. The two policy rules are significantly different, with an average percentage difference
change equaling 24.3%, which suggests that the nature of the underlying informational frictions matter
for the design of optimal policy rule.

The next question is what factor drives the differences between these two policy rules. To answer
this question, Panel (a) of Figure 7 plots the percentage difference of the optimal sectoral weights
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between the exogenous information economy and the elastic attention economies against the initial
price flexibilities under CPI stabilization. Anticipated from the discussion in last section, there is
a sharp pattern that the difference is amplified when the initial level of price flexibility is low, and
the heterogeneity in the price flexibilities account for more than 85% of the policy weight difference.
With exogenous information, the more rigid sectors receive a higher weight. With elastic attention,
the policymaker will put an additional emphasis on these sectors due to the feedback effects between
the policy and the endogenous flexibilities, which verifies the intuition developed in Proposition 4.4
and 4.5 in the full calibrated model.

Figure 7: Optimal Policy Rule and Endogenous Price Flexibility

(a) Difference in policy rules (b) policy-induced price flexibility

Panel (b) of Figure 7 further highlights the aforementioned endogenous response of price flexi-
bilities. The sectors that are relatively more rigid (flexible) under the CPI stabilization policy rule
becomes even more so under the optimal monetary policy rule. The dispersion of price rigidities
is therefore amplified. Again, this result is consistent with the findings in the stylized example in
Subsection 4.4.

6. Conclusion

This paper explores how firms acquire information in complex production networks. Utilizing novel
data sets on firms’ browsing activities; we establish an “attention network” in the economy and
present three empirical facts that characterize this network. Motivated by the empirical evidence,
we develop a theoretical framework featuring a production network, rationally inattentive firms, and
monetary policy. In our framework, the input-output linkages, the volatilities of sectoral shocks, and
the monetary policy endogenously determine sectoral nominal rigidities, information acquisition,
and strategic interactions of sectoral attentions in general equilibrium. These features allow the
model to rationalize our empirical findings, both qualitatively and quantitatively. In particular, our
model parsimoniously captures the cross-sector distribution of forecast errors and nominal rigidity

41



observed in the data. We also analyze the design of optimal monetary policy in this environment.
When the central bank can manage firms’ expectations (and therefore nominal rigidities), we find that
the optimal policy implementation differs substantially from the model with exogenous information
frictions: feedback between optimal policy and attention leads to endogenous dispersion in the
cross-sector distribution of nominal rigidities.

Several research directions remain to be explored in the future. First, our analysis focuses on a static
setting; it would be interesting to investigate how a dynamic environment affects firms’ information
acquisition and the design of optimal monetary policy in the context of production networks. In
this case, persistent features of shocks and dynamic impacts of monetary policy will add an extra
dimension of complexity to the model analysis. Second, our current results mainly speak about the
nominal side of the economy. How endogenous information acquisition influences sectoral shock
propagation and real economic allocations (e.g., Hulten’s theorem) remains an open question. To
address this question, adopting more general CES production technology that generalizes our Cobb-
Douglas framework seems necessary. The underlying research directions go beyond the scope of this
paper, and we leave it for future work.
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A. Data Appendix

A.1 The EDGAR Browsing Data

A.1.1 Constructing the Browsing Data

The EDGAR log files contain the full viewing history of the filed documents published on EDGAR, including the
viewers’ IP address, the timestamp of the request, and the page requested. These log files were made available
online by the SEC at https://www.sec.gov/data/edgar-log-file-data-set. The SEC provides the first three octets
of the viewers’ IP address and anonymizes the fourth octet with a 3-character string that preserves the last octet’s
uniqueness without revealing the IP’s full identity.27 Following the method proposed by Chen et al. (2020), we
decipher the last octet and reveal the full IP address. We further map each viewer’s uncovered IP address to their
true identity using services provided by ip-info.io, a leading IP information provider. The final sample contains
a total of 713,157,510 unique IP addresses of 7,622 public companies in our sample period, representing 52.4% of
all browsings of disclosed files recorded in EDGAR. The summary statistics of the baseline sample are presented
in Table 1 in the main text.

A.1.2 The Surge of EDGAR usage

The year 2009 marks a noticeable milestone in terms of EDGAR adoption. Graph A.2 shows the Google Trend
for the keyword "SEC EDGAR search", directly linking to EDGAR’s search page, which is the primary point of
entry for human users. The number of searches surged a few months prior to 2009, followed by a stable level of
searches thereafter.

Despite the general rule of new product adoption which predicts a Bass Diffusion Model growth curve (Rogers
et al. (2017); Bass (1969)), the information content of disclosures may also contribute to the increasing usage of
the EDGAR platform. The reason is twofold. First, due to the changing regulatory landscape, SEC requires
the disclosure of more and more content over time.28 Figure A.1 illustrates the average lengths of 10-Ks and
10-Qs, two primary types of public disclosures. It can be seen that the lengths are steadily increasing, suggesting
that the information in disclosures gets richer over the years. Due to the benefits of reducing information
asymmetry and the associated benefits, such as lowering the cost of capital(Francis et al. (2008)), mitigating the
adverse selection problems (Milgrom (1981); Diamond and Verrecchia (1991)), and offsetting the negative effects
of complex financial statements on the information environment (Guay et al. (2016)), firms also have incentives
to disclose more information voluntarily.

27An octet is an integer in the range [0, 256). For example, an IP address provided by the SEC is "10.191.131.ace", where
the fourth octet "ace" masks the last three digits of the IP address.

28For instance, SEC started mandating firms to disclose unresolved SEC staff comments (2005), the effectiveness of
internal control over financial reporting (2007), risk factors (Item 1A, 2006), mining safety (Item 4, 2011), oil and gas reserves
in possession of energy companies, hedging policies (2018), and payment to US federal and foreign governments by natural
resource extractors (2020).
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Figure A.1: Average Length of 10-K and 10-Q Documents
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A.2 Constructing Text-Based Attention Measure

10-K filings. The SEC requires public companies to file Form 10-K annually. The 10-K filing is a detailed
document that provides a comprehensive overview of a company’s financial performance, operations, and risks,
among other important information. 10-K goes beyond regular annual reports and provides a more in-depth
backward-looking and forward-looking analysis of a company.

Methodology. We also propose another measure of attention based on a text-based approach similar to that of
Flynn and Sastry (2023) and Song et al. (2022). The idea is to choose a dictionary of "signal words" unique to each
industry and calculate the frequency counts in a company’s 10-K disclosures. For example, the word "uranium"
is most likely to be mentioned when a firm is discussing the "Mining (except Oil and Gas)" industry (NAICS code
212). If a company repeatedly mentions "uranium" in its corporate disclosures (high word frequency), it likely
devotes greater managerial attention to NAICS 212.
We select the keyword list for each industry i (defined by three-digit NAICS codes) following the steps below:
(1) Prepare corpus texts pertaining to each industry from two sources. First, we extract company descriptions for
all public US companies from Osiris, a Bureau van Dĳk data product that contains comprehensive information on
public and private companies across the globe. In Osiris, each company has a short description of its history and
an overview of its business and products. By matching these descriptions with their industry codes, they jointly
portray the essence of the industries that they belong to. The second corpus is the descriptive texts of NAICS
codes, maintained by the NAICS Association, LLC, a company specializing in NAICS code services.
(2) Pre-processing. Two python packages, Spacy and NLTK (Natural Language Toolkit) are prerequisites. We ex-
ecute two procedures before running the main program. First, we use NLTK’s embedded stop word list to remove
common words like "the", "an", and "at" that lack meaning. Second, we run entity_recognization.py to leverage
Spacy’s Named Entity Recognition (NER) algorithm and the large English language model en_core_web_lg to
identify and exclude geographic and geopolitical entities. This prevents some geographically-concentrated in-
dustries from capturing words like "Texas" and "China".
(3) After pre-processing, we tokenize the texts using NLTK’s pre-trained language model and select all nouns
(NN), adjectives (JJ), and verbs (VB) - the three parts of speech that form sentences. We first extract the 100 most
common words across all industries (subjectively chosen but works well) and remove them, as they are unlikely
to be unique to a specific industry.
(4) We employ the TF-IDF (Term Frequency-Inverse Document Frequency) algorithm, a method that is intended
to reflect how relevant a word is to a document in a corpus (Qaiser and Ali, 2018), to select a dictionary of signal
words Θ𝑗 of each NAICS3 industry j. The intuition behind TF-IDF is that a term that appears frequently in a
document but rarely in the rest of the corpus is more likely to be representative of the topic of the document. We
vectorize the corpus documents, calculate the tf-idf score of every qualified word, and select the top 15 words
with the highest tf-idf scores into the industry j’s dictionary Θ𝑗 .
(5) Using the dictionary generated in (4), We search for the word frequency of words in Θ𝑗 for every j in firms’ 10-K
filings. We restrict the search to Item 1A (Risk Factors) and Item 7 (Management Discussion and Analysis), as
companies are most likely to discuss an industry about their risk or strategic concerns in these two parts. Finally,
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we aggregate the total number of occurrences of each word in industry j’s dictionary Θ𝑗 , indexed as k. Firm i’s
attention to industry j in year t is calculated as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖 , 𝑗 ,𝑡 =

∑
𝑘∈Θ𝑗

𝑊𝑜𝑟𝑑𝐹𝑟𝑒𝑞𝑖 ,𝑘,𝑡 (A.1)
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B. Empirical Figures and Tables

Table B.1: Industry-level Summary Statistics

71 Sectors 405 Sectors

Mean Median S.D. Mean Median S.D.

Input Share 0.014 0.0025 0.040 0.0025 0.000029 0.014
Sales Share 0.014 0.0030 0.046 0.0025 0.000075 0.019
Inflation Volatility 0.10 0.053 0.15 0.091 0.049 0.12
Sales Growth Volatility 0.090 0.080 0.058 0.12 0.09 0.13
TFP Volatility 0.031 0.024 0.030

Figure B.1: Browsing Intensity and Input-Output Linkage
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Note: The left panel shows the binscatter plot between sector 𝑖’s log browsings on an upstream sector 𝑗

and 𝑗’s share as a supplier of 𝑖. The right panel shows the binscatter plot between sector 𝑖’s log browsings
on a downstream sector 𝑗 and 𝑗’s share as a customer of 𝑖. Both plots remove the industry-year fixed
effect.
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Table B.2: Filed Documents Being Viewed Most

Form Avg Browsing Description

S-4 273,887,040 Registration of securities issued in business combination transactions
POSASR 46,209,696 Post-effective Amendment to an automatic shelf registration statement

on Form S-3ASR or Form F- 3ASR
S-3ASR 32,536,336 Automatic shelf registration statement of securities of well-known

seasoned issuers
F-4 15,068,362 Registration statement for securities issued by foreign private issuers in

certain business combination transactions
F-3 13,138,934 Registration statement for specified transactions by certain foreign

private issuers
T-3 12,627,994 Initial application for qualification of trust indentures
F-3ASR 9,830,287 Automatic shelf registration statement of securities of well-known

seasoned issuers
40APP 1,533,771 Applications under the Investment Company Act other than

those reviewed by Office of Insurance Products
424B5 1,074,623 Prospectus filed pursuant to Rule 424(b)(5)
15-15D 1,003,571 Notice of suspension of duty to file reports pursuant to Section 13 and

15(d) of the Act

Note: This table lists the 10 forms filed on the EDGAR with the most browsings in 2016.
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Table B.3: Browsing Intensity and Input-Output Linkages (Sales and TFP Volatility)

Browsing Intensity
71 Sectors 405 Sectors

(1) (2) (3) (4) (5) (6)

Input Share 4.28*** 5.05*** 11.0***
(0.85) (0.94) (1.03)

Sales Share 5.88*** 5.18*** 9.35***
(1.06) (0.79) (0.83)

Inflation Volatility 0.54*** 0.52*** 0.52*** 0.55***
(0.16) (0.14) (0.064) (0.061)

TFP Volatility 5.80*** 5.66***
(0.64) (0.56)

Industry Controls ✓ ✓ ✓ ✓ ✓ ✓
Industry-Year FE ✓ ✓ ✓ ✓ ✓ ✓
Adjusted 𝑅2 0.79 0.81 0.79 0.80 0.67 0.69
No. Observations 23098 23098 26216 26216 311061 309238

Note: This table shows how the browsing intensity of an industry depends on its input share from the upstream
sectors, the sales share from the downstream sectors, and how volatile the other sectors’ sales or TFP are.
Robust standard errors are in paraentheses and clustered by industry. Significance: * 𝑝 < 0.1, ** 𝑝 < 0.05, ***
𝑝 < 0.01
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Table B.4: Browsing Intensity and Forecast Accuracy

Forecast Error

Earnings Per Share Sales

(1) (2) (3) (4)

Browsing Intensity (30 days) -0.020** -0.0011***
(0.0073) (0.00023)

Browsing Intensity (180 days) -0.042*** -0.0016**
(0.0090) (0.00056)

Controls ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓
Adjusted 𝑅2 0.25 0.25 0.42 0.42
No. Observations 6722 6722 7607 7607

Note: Standard errors are in parentheses and are clustered at industry level. This table shows how firms’
forecast accuracy is assocatiated with firms’ browsing intensity in the past 30 days or 180 days before the
forecast day. .Significance: * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Figure B.2: Distribution of Browsing Activity (per employment)
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Figure B.3: Distribution of Browsing Activity (per sales)
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Figure B.4: Browsing Volume, Employment and Sales
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Figure B.5: Supply Chain Relationships Over Time
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Note: The graph presents the number of suppliers/customers and supply chain relationships in the
sample period.
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Figure B.6: Browsing Intensity and Forecast Error
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Note: The left panel is the binscatter plot between a firm’s forecast error on its future earnings per share
(EPS) and its total log browsing 90 days before the forecast. The right panel is the binscatter plot between
a firm’s forecast error on its future sales and its total log browsing 90 days before the forecast

Figure B.7: Browsing and Trading Relationship: Event Studies
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(c) Supplier’s Browsing on Customer

Note: The figure depicts the log browsings of customers on suppliers (left panel) and suppliers on customers
(right panel) when new trading relationships are formed at period 0. The frequency is quarterly and 90%
confidence intervals are based on clustering at the browser level.
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Figure B.8: Browsing and Trading Relationship: Event Studies (95 CI)
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Note: The figure depicts the log browsings of customers on suppliers (left panel) and suppliers on customers
(right panel) when new trading relationships are formed at period 0. The frequency is quarterly and 90%
confidence intervals are based on clustering at the browser level.
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C. Additional Facts on Browsing Activities

Distribution of browsing activities across firms and industries. Figure C.1 shows the distribution of browsing
activity at the firm and industry level in 2016. To account for size bias, we adjust a firm’s total browsing by its
total employment (shown in Figure B.2) and by its sales (shown in Figure B.3), respectively. The browsings are
distributed unequally across firms and industries. In particular, the distribution is fat-tailed and involves high
kurtosis — a large fraction of firms have few browsings, while a small number of firms have significantly large
browsings.

Figure C.1: Distribution of Browsing Activity
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Browsing, employment, sales, and market concentration. Figure B.4 illustrates the relationship between a
firm’s total browsing with its employment (left panel) and sales (right panel). It is clear that larger firms, on
average, browse other firms more intensively. Figure C.2 shows how browsers’ browsings vary with the market
concentration of the industry they are located in. We measure the market concentration using the Herfindahl-
Hirschman Index (HHI). The y-axis in the top-left panel represents firms’ total browsing volume in an industry.
The y-axis in the top-right panel measures the average browsing volume of a browser in an industry. The y-axis
in the bottom-left panel denotes the average number of browsees a browser views in an industry. Finally, the
y-axis in the bottom-right panel is the average browsing on a browsee of a browser in an industry. To sum up, if a
firm is located in an industry with a smaller HHI (or less concentrated), it, on average, has more total browsing.
This is due to 1) it browses a larger number of firms, and 2) it also browses more intensively on each browsee.

A-15



Figure C.2: Browsing and Market Concentration
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Attention allocated to competitors, suppliers and customers. Figure C.3 plots the allocation of a firm’s browsing
activity to three types of firms: the direct supplier or customer, its competitor, and firms that are neither direct
suppliers/customers nor competitors. A typical firm allocates 24.78% of its browsing to its direct suppliers and
customers, 49.09% to distance-2, distance-3 and distance-4 suppliers or customers, while it allocates 12.6% to its
competitors. It is important to note that the attention allocated to direct and indirect suppliers and customers
is possibly underestimated. The reasons are twofold. First, the Factset data only records a fraction of firms’
suppliers and customers. Second, we classify a firm as a competitor if it is both a supplier/customer and a
competitor. Therefore, our exercise provides a lower bound for quantifying firms’ attention allocated to suppliers
and customers.
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Figure C.3: Allocation of Browsing Activity

24.78%

49.09%

15.49%

10.64%

Direct Supplier/Customer Distance 2−4 Supplier/Customer

Other Firms Competitor

Note: This figure plots the allocation of a firm’s browsing volume to the direct and indirect suppliers or
customers, its competitors, and other firms in the Factset dataset in 2016.
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D. Theory

In this paper, we adopt the convention that two vectors or matrices have the relation A ≥ B if 𝑎𝑖 𝑗 ≥ 𝑏𝑖 𝑗 , ∀𝑖 , 𝑗,
A > B if A ≥ B, and A ≠ B. A >> B if 𝑎𝑖 𝑗 > 𝑏𝑖 𝑗 , ∀𝑖 , 𝑗. Therefore A > 0 implies that 𝑎𝑖 𝑗 ≥ 0, ∀𝑖 , 𝑗 and A ≠ 0. In
addition, vectors in this paper are column vectors by default unless specified otherwise (for example, κ and φ
are row vectors). Throughout our theoretical, quantitative, and optimal policy analysis, we impose the following
parameter assumption on the economy’s production network.

Assumption 1. The economy’s production network is represented by a nonnegative adjacency matrix A > 0 such that for
each sector

∑𝑁
𝑗=1 𝑎𝑖 𝑗 < 1; ∀𝑖 = 1, 2, ...𝑁 . Each sector’s production displays constant return to scale, therefore the labor

share vector α =

(
{𝛼𝑖}𝑁𝑖=1

) ′
satisfies 𝛼𝑖 = 1 −∑𝑁

𝑗=1 𝑎𝑖 𝑗 > 0, ∀𝑖 = 1, 2, ...𝑁. We denote ′ as the matrix transpose.

In addition, in this paper we define the following matrix operator,

diag(·) : R𝑁×𝑁 ↦−→ R𝑁 ; diag(·) : R𝑁 ↦−→ R𝑁×𝑁

where operator diag(·) either extracts the diagonal vector from a given matrix as a column vector, or perform the
inverse operation that transform a given vector into diagonal matrix with corresponding diagonal elements equal
to the input vector. For example, consider a 𝑁-dimensional vector of interest ,

µ𝑣 =
(
𝜇1 , 𝜇2 , ....𝜇𝑁

) ′ ∈ R𝑁 = diag (µ) ; µ = diag (µ𝑣)

Therefore, the nature of this matrix operation hinges on the input object, which is consistent with the Matlab
convention.

Next, we adopt the following conventions for matrix differentiation:

1. The derivative between a scalar and a vector follows an arrangement of the same form as this vector. For
example,

𝜕𝜇𝑖

𝜕κ
=

[
𝜕𝜇𝑖

𝜕𝜅1

𝜕𝜇𝑖

𝜕𝜅2
· · · 𝜕𝜇𝑖

𝜕𝜅𝑁

]
; 𝜕µ𝑣

𝜕𝜅𝑖
=

[
𝜕𝜇1
𝜕𝜅𝑖

𝜕𝜇2
𝜕𝜅𝑖

· · · 𝜕𝜇𝑁

𝜕𝜅𝑖

] ′
2. The derivative between a scalar and a matrix follows an arrangement of the same form as this matrix. For

example,

𝜕𝜇𝑖

𝜕A
=



𝜕𝜇𝑖

𝜕𝑎11

𝜕𝜇𝑖

𝜕𝑎12
· · · 𝜕𝜇𝑖

𝜕𝑎1𝑁
𝜕𝜇𝑖

𝜕𝑎21

𝜕𝜇𝑖

𝜕𝑎22
· · · 𝜕𝜇𝑖

𝜕𝑎2𝑁
...

...
. . .

...
𝜕𝜇𝑖

𝜕𝑎𝑁1

𝜕𝜇𝑖

𝜕𝑎𝑁2
· · · 𝜕𝜇𝑖

𝜕𝑎𝑁𝑁


; 𝜕A

𝜕𝜇𝑖
=



𝜕𝑎11
𝜕𝜇𝑖

𝜕𝑎12
𝜕𝜇𝑖

· · · 𝜕𝑎1𝑁
𝜕𝜇𝑖

𝜕𝑎21
𝜕𝜇𝑖

𝜕𝑎22
𝜕𝜇𝑖

· · · 𝜕𝑎2𝑁
𝜕𝜇𝑖

...
...

. . .
...

𝜕𝑎𝑁1
𝜕𝜇𝑖

𝜕𝑎𝑁2
𝜕𝜇𝑖

· · · 𝜕𝑎𝑁𝑁

𝜕𝜇𝑖


3. The derivative between two vectors: the numerator vector determines the arrangement of its derivative
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matrix. For example,

𝜕µ𝑣

𝜕κ
=

𝜕µ𝑣

𝜕κ′ =

[
𝜕µ𝑣

𝜕𝜅1

𝜕µ𝑣

𝜕𝜅2
· · · 𝜕µ𝑣

𝜕𝜅𝑁

]
=



𝜕𝜇1
𝜕𝜅1

𝜕𝜇1
𝜕𝜅2

· · · 𝜕𝜇1
𝜕𝜅𝑁

𝜕𝜇2
𝜕𝜅1

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇2
𝜕𝜅𝑁

...
...

...
...

𝜕𝜇𝑁

𝜕𝜅1

𝜕𝜇𝑁

𝜕𝜅2
· · · 𝜕𝜇𝑁

𝜕𝜅𝑁


;

𝜕 (µ𝑣)′
𝜕κ

=
𝜕 (µ𝑣)′
𝜕κ′ =



𝜕𝜇1
𝜕𝜅1

𝜕𝜇2
𝜕𝜅1

· · · 𝜕𝜇𝑁

𝜕𝜅1
𝜕𝜇1
𝜕𝜅2

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇𝑁

𝜕𝜅2
...

...
...

...
𝜕𝜇1
𝜕𝜅𝑁

𝜕𝜇2
𝜕𝜅𝑁

· · · 𝜕𝜇𝑁

𝜕𝜅𝑁


D.1 Proof of Proposition 3.1

Proof. In model equilibrium, households maximize their expected utility subject to their budget constraints. The
optimal consumption demand and the intratemporal Euler condition satisfy

𝑃𝑖 ,𝑡𝐶𝑖 ,𝑡 = 𝛽𝑖𝑃𝑡𝐶𝑡 ;
𝑊𝑡

𝑃𝑡
𝐶
−𝛾
𝑡 = 𝐿

1
𝜂

𝑡

With perfect information, firms’ profit optimization problem reads

max{
𝑃𝑖𝜄𝑡 ,𝐿𝑖𝜄𝑡 ,{𝑋𝑖𝜄 𝑗𝑡}𝑁

𝑗=1

} Π𝑖𝜄𝑡 = (1 + 𝜏𝑖)𝑃𝑖𝜄𝑡𝑌𝑖𝜄𝑡 −𝑊𝑡𝐿𝑖𝜄𝑡 −
𝑁∑
𝑗=1

𝑃𝑗𝑡𝑋𝑖𝜄 𝑗𝑡 − 𝑇𝑖𝜄𝑡

where 𝜏𝑖 = 1
(𝜃𝑖−1) is the subsidy to remove monopolistic distortion, 𝑇𝑖𝜄𝑡 is a lump-sum tax that finances the subsidy.

In equilibrium, 𝑇𝑖𝜄𝑡 = 𝜏𝑖𝑃𝑖𝜄𝑡𝑌𝑖𝜄𝑡 . A canonical cost minimization problem implies that the optimal input and labor
demand satisfy

𝑋𝑖 ,𝜄, 𝑗 ,𝑡 = 𝑎𝑖 𝑗MC𝑖 ,𝑡

𝑌𝑖 ,𝜄,𝑡

𝑃𝑗 ,𝑡
, and 𝐿𝑖 ,𝑡 = 𝛼𝑖MC𝑖 ,𝑡

𝑌𝑖 ,𝜄,𝑡

𝑊𝑡
, (D.1)

where the marginal cost of firms in sector 𝑖 is MC𝑖𝑡 = 𝑍−1
𝑖𝑡
𝑊

𝛼𝑖

𝑡

∏𝑁
𝑗=1 𝑃

𝑎𝑖 𝑗

𝑗𝑡
. The market-clearing condition is given

by

𝑌𝑖 ,𝑡 = 𝐶𝑖 ,𝑡 +
𝑁∑
𝑗=1

∫ 1

0
𝑋𝑗 ,𝜄,𝑖 ,𝑡𝑑𝜄.

Next, we characterize the full-information equilibrium.

Frictionless benchmark. In absence of information acquisition cost, the sectoral price is identical to the nominal
marginal cost,

𝑃𝑖 ,𝜄,𝑡 = 𝑃𝑖 ,𝑡 = MC𝑖 ,𝑡 =
1
𝑍𝑖 ,𝑡

𝑊
𝛼𝑖

𝑡

𝑁∏
𝑗=1

𝑃
𝑎𝑖 𝑗

𝑗 ,𝑡
, (D.2)

As a result, the after-tax (net) profit for each firm equals to zero and the households’ budget balance is given by
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𝑃𝑡𝐶𝑡 = 𝑊𝑡𝐿𝑡 . And the sectoral inputs follow

𝑋𝑗 ,𝑖 ,𝑡 = 𝑋𝑗 ,𝜄,𝑖 ,𝑡 = 𝑎 𝑗𝑖
𝑃𝑗 ,𝑡𝑌𝑗 ,𝜄,𝑡

𝑃𝑖 ,𝑡
. (D.3)

Then the goods market clearing condition for sector 𝑖 follows

𝑃𝑖 ,𝑡𝑌𝑖 ,𝑡 = 𝛽𝑖𝑃𝑡𝐶𝑡 +
𝑁∑
𝑗=1

𝑎 𝑗𝑖𝑃𝑗 ,𝑡𝑌𝑗 ,𝑡 . (D.4)

Let 𝜆𝑖𝑡 denote the sales-to-GDP ratio (the Domar weight), thus

𝜆𝑖 ,𝑡 = 𝛽𝑖 +
𝑁∑
𝑗=1

𝑎 𝑗𝑖𝜆 𝑗 ,𝑡 .

Consequently, with perfect information, the Domar weight is constant. In matrix form,

λ = β + A′λ.

Then the Domar weight is given by

λ′ = β′(I − A)−1. (D.5)

Next, we provide the steady-state solution of the frictionless benchmark.

The determinant steady-state. The subscript 𝑡 of a time-varying variable is removed to denote the steady-state
value. We normalize the steady-state money supply 𝑀 to be 1, which implies that the GDP is equal to 1 as
𝑃𝐶 = 𝑀 = 1. In the perfect-information economy, 𝑃𝑖 ,𝜄 = 𝑃𝑖 = MC𝑖 , so the steady-state value of the prices and
wage rate in (D.2) satisfy

𝑃𝑖 = MC𝑖 =
1
𝑍𝑖

𝑊𝛼𝑖

𝑁∏
𝑗=1

𝑃
𝑎𝑖 𝑗

𝑗
= 𝑊𝛼𝑖

𝑁∏
𝑗=1

𝑃
𝑎𝑖 𝑗

𝑗
, (D.6)

where the steady-state of sectoral productivity shock 𝑍𝑖 = 1, 𝑖 = 1, 2, ...𝑁 . Meanwhile, each firm’s after-tax profit
is zero, Π𝑖 ,𝜄 = 0. The steady-state household budget constraint is given by 𝑃𝐶 = 𝑊𝐿 = 𝑀, and the optimal labor
supply condition follows

𝑊

𝑃
𝐶−𝛾 = 𝐿

1
𝜂 .
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Combing these two equations.

𝑊 = 𝑀
1+𝜂𝛾
1+𝜂 𝑃

𝜂(1−𝛾)
1+𝜂 = 𝑀

1+𝜂𝛾
1+𝜂 ©­«

𝑁∏
𝑗=1

𝑃𝑗
ª®¬

𝛽 𝑗𝜂(1−𝛾)
1+𝜂

, (D.7)

where we use 𝑃 =
∏𝑁

𝑖=1 𝑃
𝛽𝑖
𝑖

and rewrite the sector’s subscript to 𝑗. Given equation (D.6) and (D.7), the steady-state
of equilibrium price system is given by

𝑃𝑖 = 𝑀
𝛼𝑖(1+𝜂𝛾)

1+𝜂 ©­«
𝑁∏
𝑗=1

𝑃𝑗
ª®¬

𝛼𝑖𝛽 𝑗𝜂(1−𝛾)
1+𝜂 +𝑎𝑖 𝑗

,

which implies that the steady-state of sectors’ prices are determined by the exogenous money supply 𝑀 = 1.
Explicitly, 𝑃𝑖 = 1 for 𝑖 = 1, 2, ...𝑁 . Thus, the final goods price 𝑃 and the final consumption goods 𝐶 can be
obtained in turn:

𝑃 =

𝑁∏
𝑖=1

𝑃
𝛽𝑖
𝑖

= 1, and 𝐶 =
𝑀

𝑃
= 1,

Furthermore, the steady-state wage rate and the aggregated labor is given by

𝑊 = 1, and 𝐿 =
𝑀

𝑊
= 1.

Next, since 𝑃𝑖𝐶𝑖 = 𝛽𝑖𝑃𝐶, the sectoral consumption follows

𝐶𝑖 =
𝛽𝑖𝑃𝐶

𝑃𝑖
= 𝛽𝑖 .

Using (D.1) under perfect information, firms’ inputs in sector 𝑖 inputs are given by

𝐿𝑖 = 𝛼𝑖
𝑃𝑖𝑌𝑖

𝑊
= 𝛼𝑖𝜆𝑖 , and 𝑋𝑖 , 𝑗 = 𝑋𝑖 ,𝜄, 𝑗 = 𝑎𝑖 𝑗

𝑃𝑖𝑌𝑖

𝑃𝑗
= 𝑎𝑖 𝑗𝜆𝑖

Finally, sector 𝑖’s steady-state output is given by

𝑌𝑖 =
𝜆𝑖𝑀

𝑃𝑖
= 𝜆𝑖

Next, we log-linearize the equilibrium system under perfect information.

Linearized system under perfect information. The log-linearized goods market clearing condition (D.4) is given
by

𝑃𝑖𝑌𝑖
(
𝑝𝑖𝑡 + 𝑦𝑖𝑡

)
= 𝛽𝑖𝑀𝑚𝑡 +

𝑁∑
𝑗=1

𝑎 𝑗𝑖𝑃𝑗𝑌𝑗

(
𝑝 𝑗𝑡 + 𝑦 𝑗𝑡

)
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where we use 𝑃𝑡𝐶𝑡 = 𝑀𝑡 and 𝑃𝑖𝑡 = 𝑀𝐶𝑖𝑡 . , In matrix form:

p𝑡 + y𝑡 = diag (λ)−1 (I − A′)−1β𝑚𝑡 (D.8)

Next, the sectoral price in (D.2) can be log-linearized as

𝑝𝑖𝑡 = mc𝑖𝑡 = −𝑧𝑖𝑡 + 𝛼𝑖𝑤𝑡 +
∑
𝑗

𝑎𝑖 𝑗𝑝 𝑗𝑡 .

To facilitate comparison with the Rational-Inattention equilibrium, we denote p∗𝑡 and c∗𝑡 as the price-response vector
and consumption vector in the Full-Information Equilibrium , respectively. The matrix form of the above equation
can be expressed as

p∗𝑡 = −z𝑡 +α𝑤𝑡 + Ap∗𝑡 ,

which leads to the price-response vector under perfect information,

p∗𝑡 = (I − A)−1(−z𝑡 +α𝑤𝑡). (D.9)

We define 𝑝
𝑓

𝑡 as the log-deviation from the final goods price 𝑃𝑡 , then 𝑝
𝑓

𝑡 =
∑𝑁

𝑖=1 𝛽𝑖𝑝𝑖𝑡 = β
′p∗𝑡 . Multiplying both

sides of the equation (D.9) by β′ yields

𝑝
𝑓

𝑡 = −β′(I − A)−1z𝑡 + β′(I − A)−1α𝑤𝑡 = −λ′z𝑡 + 𝑤𝑡 , (D.10)

where we use the matrix property of β′(I−A)−1α = 1 and β′(I−A)−1 = λ′. We then log-linearize the households’
budget constraint under perfect information and the Euler condition, yielding

𝑝
𝑓

𝑡 + 𝑐∗𝑡 = 𝑤𝑡 + ℓ𝑡 = 𝑚𝑡 , and 𝑤
𝑓

𝑡 − 𝑝
𝑓

𝑡 − 𝛾𝑐∗𝑡 =
1
𝜂
ℓ𝑡 .

Eliminating ℓ𝑡 by combining the above equations provides the linearized output as

𝑐∗𝑡 =
1 + 𝜂

1 + 𝛾𝜂

(
𝑤𝑡 − 𝑝

𝑓

𝑡

)
=

1 + 𝜂

1 + 𝛾𝜂
λ′z𝑡 ,

where the second identity follows from the equation (D.10).

□
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D.2 Proof of Lemma 3.1

Proof. We first derive a linear-quadratic-Gaussian (LQG) approximation to each firm’s expected profit function.
We focus on a firm 𝜄 from sector 𝑖, at the first stage, its expected profit function is given by

max
𝑃𝑖𝜄𝑡

E𝑖𝜄𝑡

[
𝑈

′ (𝐶𝑡)
𝑃𝑡

{(
(1 + 𝜏𝑖)𝑃(1−𝜃𝑖)

𝑖𝜄𝑡 − 𝑃
−𝜃𝑖

𝑖𝜄𝑡 𝑀𝐶𝑖𝑡

)
𝑃
𝜃𝑖

𝑖𝑡
𝑌𝑖𝑡

}]
,

where we substitute firm (𝑖 , 𝜄)’s demand function under monoplistic competition into the objective. Since the
representative household’s stochastic discount factor 𝑈

′(𝐶𝑡 )
𝑃𝑡

and does not affect firms’ optimal pricing decisions
in our static model, they do not affect firms’ optimal information choices. Therefore, we simplify the objective
function as29

max
𝑃𝑖𝜄𝑡

E𝑖𝜄𝑡

[
(1 + 𝜏𝑖)𝑃(1−𝜃𝑖)

𝑖𝜄𝑡 𝑃
𝜃𝑖

𝑖𝑡
𝑌𝑖𝑡 − 𝑃

−𝜃𝑖

𝑖𝜄𝑡 𝑃
𝜃𝑖

𝑖𝑡
𝑌𝑖𝑡𝑀𝐶𝑖𝑡︸                                            ︷︷                                            ︸

≡ Π𝑖𝜄𝑡

]
,

which parallels (3.1). Its marginal cost is given by

𝑀𝐶𝑖𝑡 =
𝑊

𝛼𝑖

𝑡

∏𝑁
𝑗=1 𝑃

𝑎𝑖 𝑗

𝑗𝑡

𝑍𝑖𝑡
.

Note that the marginal cost is identical across firms within the same sector. In preceding analysis, we present the
solution of perfect-information, deterministic steady state in this model, so we express the objective function in
log-deviations from the steady-state,

Π𝑖𝜄𝑡 =
𝜃𝑖

(𝜃𝑖 − 1)𝜆𝑖𝑒
[(1−𝜃𝑖)𝑝𝑖𝜄𝑡+𝜃𝑖𝑝𝑖𝑡+𝑦𝑖𝑡] − 𝜆𝑖𝑒

[
−𝜃𝑖𝑝𝑖𝜄𝑡+𝜃𝑖𝑝𝑖𝑡+𝑦𝑖𝑡+𝛼𝑖𝑤𝑡+

∑𝑁
𝑗=1 𝑎𝑖 𝑗𝑝 𝑗𝑡−𝑧𝑖𝑡

]
(D.11)

To ease the exposition, we define a vector of state variables for firm (𝑖 , 𝜄),

𝚼𝑖𝑡 =

[
𝑝1𝑡 𝑝2𝑡 . . . , 𝑝𝑖𝑡 . . . 𝑝𝑁𝑡 𝑤𝑡 𝑧𝑖𝑡 𝑦𝑖𝑡

] ′
.

Next, we perform a second-oder Taylor series expansion of Π𝑖𝜄𝑡 in terms of the control variable 𝑝𝑖𝜄𝑡 and the state
vector 𝚼𝑖𝑡 ,

Π𝑖𝜄𝑡
(
𝑝𝑖𝜄𝑡 ,𝚼𝑖𝑡

)
= Π𝑖𝜄𝑡 (0, 0) + DΠ𝑖𝜄(0,0)𝒳𝑖𝜄𝑡 +

1
2𝒳

′
𝑖𝜄𝑡HΠ𝑖𝜄(0,0)𝒳𝑖𝜄𝑡 + 𝑂(𝜀3). (D.12)

where 𝒳𝑖𝜄𝑡 ≡
[
𝚼𝑖𝑡

𝑝𝑖𝜄𝑡

]
, DΠ𝑖𝜄(0,0) and HΠ𝑖𝜄(0,0) are Jacobian and Hessian matrix of derivatives, respectively. Using

standard LQG control techniques, it is straightforward to show that only the quadratic term matters for the

29The term 𝑃
𝜃𝑖

𝑖𝑡
𝑌𝑖𝑡 can also be removed from the objective, because the LQG approximation will be unique up to the

steady-state constant 𝑈
′ (𝐶)
𝑃 𝑃

𝜃𝑖

𝑖
𝑌𝑖 , but such difference can be normalized by choosing approriate information cost 𝜒𝑖 .
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optimal information choice under rational inattention.30 In the approximation, the Hessian matrix is given by

1
2HΠ𝑖𝜄(0,0) ≡

[
H𝑖

𝑥𝑥 (H𝑖
𝑢𝑥)′

H𝑖
𝑢𝑥 𝐻 𝑖

𝑢𝑢

]
, where

𝐻 𝑖
𝑢𝑢 = −1

2𝜆𝑖𝜃𝑖 ; H𝑖
𝑢𝑥 =

1
2𝜆𝑖𝜃𝑖

[
𝑎𝑖1 𝑎𝑖2 ... 𝑎𝑖𝑁 𝛼𝑖 −1 0

]
.

We do not spell the expression for block matrix H𝑖
𝑥𝑥 because it is irrelevant for the optimal pricing decision

and information choice. Then, we express the second-order approximation of the profit function under rational
inattention in quadratic form

max
𝑃𝑖𝜄𝑡

−E𝑖𝜄𝑡

[
𝚼′
𝑖𝑡W𝑖𝚼𝑖𝑡 + 𝑝′𝑖𝜄𝑡𝑅𝑖𝑝𝑖𝜄𝑡 + 2𝚼′

𝑖𝑡S𝑖𝑝𝑖𝜄𝑡

]
(D.13)

with coefficient matrices defined by

W𝑖 = −H𝑖
𝑥𝑥 ; 𝑅𝑖 = −𝐻 𝑖

𝑢𝑢 ; S𝑖 = −(H𝑖
𝑢𝑥)′.

such that

[
W𝑖 S𝑖

S′
𝑖

𝑅𝑖

]
⪰ 0 and 𝑅𝑖 ≻ 0. Using acquisition-filter-control separation principle and the certainty-

equivalence principle of the LQG control Tanaka et al. (2017), the optimal pricing decision is given by31

𝑝𝑖𝜄𝑡 = −F𝑖E𝑖𝜄𝑡 [Υ𝑖𝑡 | x𝑖𝜄𝑡] = E𝑖𝜄𝑡 [mc𝑖𝑡 | x𝑖𝜄𝑡] ; F𝑖 = 𝑅−1
𝑖 S′

𝑖 = −
[
e𝑖A 𝛼𝑖 −1 0

]
. (D.14)

Agggating (D.14) over the the entire sector, the linear functions of prices and marginal costs coincides with log-
linear decision rule (3.3). The equivalence between log-linear approximation and linear-quadratic approximation
remains valid for ANY information structure firm chooses. Since 𝑦𝑖𝑡 does not appear in firm’s ideal price, the
marginal cost, it has no incentive to pay attention to this state variable. Therefore, from now on we drop 𝑦𝑖𝑡 and
refine the state variable as 𝚼𝑖𝑡 =

[
𝑝1𝑡 𝑝2𝑡 . . . , 𝑝𝑖𝑡 . . . 𝑝𝑁𝑡 𝑤𝑡 𝑧𝑖𝑡

] ′
. The Hessian block matrix is given by

H𝑖
𝑢𝑥 = 1

2𝜆𝑖𝜃𝑖

[
𝑎𝑖1 𝑎𝑖2 ... 𝑎𝑖𝑁 𝛼𝑖 −1

]
. The optimal decision rule is simplified to F𝑖 = −

[
e𝑖A 𝛼𝑖 −1

]
.32

Next, we employ Lemma 1 in Miao et al. (2022) to cast the profit maximization problem of (D.13) into a tracking
problem of information choices,

max
x𝑖𝜄𝑡

−E
[
(𝚼𝑖𝑡 − E [𝚼𝑖𝑡 | x𝑖𝜄𝑡])′𝛀𝑖 (𝚼𝑖𝑡 − E [𝚼𝑖𝑡 | x𝑖𝜄𝑡])

]
(D.15)

where the positive-semidefinite weighting matrix is given by 𝛀𝑖 = F′
𝑖
𝑅𝑖F𝑖 ⪰ 0. Using this observation and (D.14),

30To see this point, we can transform (D.12) into a pure quadratic form (D.13) by introducing an additional constant
state 1, leading to a augmented tracking problem akin to (D.15). Since all firms are able to forecast the deterministic
state 1 perfectly without incuring any cost, its associated mean-square errors (variance and covariances) are identically 0.
Therefore, we can safely disregard the constant and first-order term in the RI problem.

31We denote e𝑖 as the 𝑖th standard basis row vector in R𝑁 .
32It is straightforward to verify that such refinement doe not change any of our results.
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we obtain the tracking formulation in terms of optimal pricing decision,

max
x𝑖𝜄𝑡

−1
2𝜆𝑖𝜃𝑖E

[ (
𝑝𝑖𝜄𝑡 − mc𝑖𝑡

)2
]

as desired. The existence of a pure tracking problem in optimal information choice relies on the fact the state
variables Υ𝑖𝑡 are "exogenous" in the eyes of firm (𝑖 , 𝜄). Since information costs 𝜒 are sector-specific, it is clear
that firms’ optimal information choice problems are homogeneous within each sector but heterogeneous across
sectors in the network. In the tracking formulation, firm’s information acquisition motive is dictated by the
optimal pricing decision, which in turn hinge on network structure via the marginal cost.

Finally, we note that the pricing decision and state variables 𝚼𝑖𝑡 are both functions of sectoral productivity shocks
z𝑡 . Under LQG setting with Shannon-entropy cost function𝒞𝑖(x𝑖 ,𝜄,𝑡) , it is well known that the optimal information
structure is Gaussian, represented by an signal structure in the form

x𝑖 ,𝜄,𝑡 = H𝑖z𝑡 + u𝑖 ,𝑙 ,𝑡 , u𝑖 ,𝜄,𝑡 ∼ N (0,V𝑖)

where H𝑖 and V𝑖 ≻ 0 are matrices of unknown dimensions to be determined by the RI problem. The informa-
tion cost function is parameterized by the classical Gaussian (conditional) mutual information, I ((z𝑡 ;x𝑖𝜄𝑡 |𝚺𝑧) =
1
2
(
log det𝚺𝑧 − log det𝚺𝑧|𝑥𝑖

)
. The proof is now complete. □

D.3 Proof of Proposition 3.2

Proof. We first transform the optimal information choice problem into a semidefinite progamming problem. Let
p𝑡 = ϕz𝑡 . ϕ is the pricing function (𝑁 × 𝑁 influence matrix) under rational inattention, which is determined in
general equilibrium.

Lemma D.1. The RI problem for firms in sector 𝑖 is represented by the following matrix optimization problem,

min
Σ𝑧|𝑥𝑖

tr
(
𝛀𝑖𝑧𝚺𝑧|𝑥𝑖

)
+ 𝜒𝑖

[
1
2 log det Σ𝑧 −

1
2 log det Σ𝑧|𝑥𝑖

]
s.t. 0 ⪯ Σ𝑧|𝑥𝑖 ⪯ Σ𝑧 ,

where Σ𝑧|𝑥𝑖 denotes the posterior covariance matrices of the fundamental shocks z𝑡 . The modified weighting matrix admits
representation as 𝛀𝑖𝑧 = G′

𝑖
G𝑖 , where G𝑖 =

√
𝑅𝑖e𝑖 (Aϕ − I +ακ).

Proof. We write (3.3) in matrix form as

mc𝑖𝑡 = 𝑝Δ𝑖𝜄𝑡 = e𝑖 (−I +ακ + Aϕ) z𝑡 , (D.16)

where 𝑝Δ
𝑖𝜄𝑡 denotes profit-maximizing ideal price. Substite (D.14) and (D.16) into the objective function in Lemma
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3.1, we express the tracking problems in terms of z𝑡 ,33

min
x𝑖𝜄𝑡

E
[
(z𝑡 − E[z𝑡 |x𝑖𝜄𝑡])′𝛀𝑖𝑧 (z𝑡 − E[z𝑡 |x𝑖𝜄𝑡])

]
+ 𝜒𝑖I(z𝑡 ;x𝑖𝜄𝑡 |Σz), (D.17)

where the modified weight matrix is given by 𝛀𝑖𝑧 = G′
𝑖
G𝑖 ⪰ 0, where G𝑖 =

√
𝑅𝑖e𝑖 (Aϕ − I +ακ). By basic matrix

algebra, the first term in problem (D.17) can be expressed as

E
[
(z𝑡 − E[z𝑡 |x𝑖𝜄𝑡])′𝛀𝑖𝑧 (z𝑡 − E[z𝑡 |x𝑖𝜄𝑡])

]
= E

[
tr ((z𝑡 − E[z𝑡 |x𝑖𝜄𝑡])′𝛀𝑖𝑧 (z𝑡 − E[z𝑡 |x𝑖𝜄𝑡]))

]
= E

[
tr

(
𝛀𝑖𝑧 (z𝑡 − E[z𝑡 |x𝑖𝜄𝑡])(z𝑡 − E[z𝑡 |x𝑖𝜄𝑡])′

) ]
= tr

(
𝛀𝑖𝑧Σ𝑧|𝑥𝑖

)
,

where the second equality follows from the invariance property that the trace operator under circular shifts.
Finally, given any signal structure firms choose, they are fully rational in predicting the unobserved states.
Therefore, the Bayesian updating formula holds such that

SNR𝑖 ≡ H′
𝑖V

−1
𝑖 H𝑖 = Σ−1

𝑧|𝑥𝑖 − Σ−1
𝑧 ⪰ 0. (D.18)

where SNR𝑖 is defined as matrix-valued signal-to noise ratio. Since Σ𝑧|𝑥𝑖 ⪰ 0 is by construction positive-
semidefinite, elementary theory of positive-definite matrices implies that

0 ⪯ Σ𝑧|𝑥𝑖 ⪯ Σ𝑧

The underlying “no-forgetting constraint” reflects the full-rationality of firms: they cannot achieve better forecasts
of some states by eliminating existing memories of other states. This completes the proof. □

Next, we derive a closed-form solution to the matrix optimization problem defined in Lemma D.1. The solution
then produces the optimal signal structure as a by-product. In particular, we employ techniques developed by
Miao et al. (2022), which also apply to more general models of dynamic, multivariate rational inattention.

To begin with, we note that by (D.16), mc𝑖𝑡 = 𝑝Δ
𝑖𝑡
= 𝑅

− 1
2

𝑖
G𝑖z𝑡 . We define the variance of the marginal cost (profit-

maximizing price, or ideal price) as V (mc𝑖𝑡). As we emphasized in the main text, this marginal-cost volatility
serves as the key determinant of firms’ information acquisition strategy. The following relationship between
V (mc𝑖𝑡) and G𝑖 holds:

V (mc𝑖𝑡) = 𝑅−1
𝑖 ∥ Σ

1
2
𝑧 G′

𝑖 ∥2 , (D.19)

where ∥ · ∥ denotes the Euclidean norm. Since 𝛀𝑖𝑧 is symmetric and Σ𝑧 ≻ 0, we construct a symmetric, positive-

33Alternatively, we can use (D.15) to derive (D.17) by defining the mapping betweem endogenous states and shocks:

Υ𝑖𝑡 = 𝚿𝑖z𝑡 . 𝚿𝑖 =


ϕ
κ
e𝑖

 . Two derivations are equivalent.
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semidefinite matrix Σ
1
2
𝑧𝛀𝑖𝑧Σ

1
2
𝑧 , where Σ

1
2
𝑧 =


𝜎1 0 ... 0
0 𝜎2 ... 0
... · · · . . .

...

0 · · · · · · 𝜎𝑁


≻ 0 denotes the positive square root matrix of the

prior covariance matrix. Next, perform an unitary eigendecomposition,

Σ
1
2
𝑧𝛀𝑖𝑧Σ

1
2
𝑧 = U𝑖𝛀𝑖

𝑑
U′

𝑖 ,

where U𝑖U′
𝑖
= 𝐼 is unitary and 𝛀𝑖

𝑑
= diag

(
{𝑑𝑖

𝑘
}𝑁
𝑘=1

)
is a diagonal matrix of nonnegative eigenvalues with

descending order. Note that G𝑖 =
√
𝑅𝑖e𝑖 (Aϕ − I +ακ) is a 1 × 𝑁 vector, and the rank of the outer product

𝛀𝑖𝑧 = G′
𝑖
G𝑖 is equal to one. Therefore, rank

(
Σ

1
2
𝑧𝛀𝑖𝑧Σ

1
2
𝑧

)
= 1 by construction. Consequently, there is only one

strictly positive eigenvalue with an associated eigenvector denoted as

𝑑𝑖1 =∥ Σ
1
2
𝑧 G′

𝑖 ∥2=
1
2𝜃𝑖𝜆𝑖V (mc𝑖𝑡) , (D.20)

ζ 𝑖1 =
Σ

1
2
𝑧 G′

𝑖

∥ Σ
1
2
𝑧 G′

𝑖
∥
.

The rest of eigenvalues are equal to 0 by definition. The next lemma presents a generalized reverse water-filling
solution of optimal posterior matrix Σ𝑧|𝑥𝑖 ,34

Lemma D.2. The optimal solution to the matrix optimization problem defined in Lemma D.1 is given by

Σ𝑧|𝑥𝑖 = Σ
1
2
𝑧 U𝑖 diag

({
min

(
1, 𝜒𝑖

2𝑑𝑖
𝑘

)}𝑁
𝑘=1

)
U′

𝑖Σ
1
2
𝑧 (D.21)

Proof. Define an instrument matrix
Σ̂𝑖 = U′

𝑖Σ
− 1

2
𝑧 Σ𝑧|𝑥𝑖Σ

− 1
2

𝑧 U𝑖 ⪰ 0

It’s clear that
Σ𝑧|𝑥𝑖 = Σ

1
2
𝑧 U𝑖Σ̂𝑖U′

𝑖Σ
1
2
𝑧 . (D.22)

Using basic properties of the trace operator,

tr
(
𝛀𝑖𝑧Σ𝑧|𝑥𝑖

)
= tr

(
𝛀𝑖𝑧Σ

1
2
𝑧 U𝑖Σ̂𝑖U′

𝑖Σ
1
2
𝑧

)
= tr

(
Σ

1
2
𝑧𝛀𝑖𝑧Σ

1
2
𝑧 U𝑖Σ̂𝑖U′

𝑖

)
= tr

(
U𝑖𝛀𝑖

𝑑
U′

𝑖U𝑖Σ̂𝑖U′
𝑖

)
= tr

(
𝛀𝑖

𝑑
Σ̂𝑖

)
;

Similarly, using properties of matrix determinant,

log det Σ𝑧 − log det Σ𝑧|𝑥𝑖 = log det Σ̂𝑖

34This result holds for arbitrarily-correlated prior matrix Σ𝑧 and for problems with arbitrary number of optimal decisions
such that rank (𝛀𝑖𝑧) > 1. See Miao et al. (2022) for more details.
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The “no-forgeting” constraint Σ𝑧|𝑥𝑖 ⪯ Σ𝑧 can also be recasted as

Σ𝑧|𝑥𝑖 ⪯ Σ𝑧 ⇔ Σ
1
2
𝑧 U𝑖Σ̂𝑖U′

𝑖Σ
1
2
𝑧 ⪯ Σ

1
2
𝑧 U𝑖U′

𝑖Σ
1
2
𝑧 ⇔ Σ̂𝑖 ⪯ I

where we use the properties of positive-semidefinite matrices. Therefore, we convert the optimization problem
in terms of surrogate matrix Σ̂𝑖 ,

min
Σ̂𝑖

tr
(
𝛀𝑖

𝑑
Σ̂𝑖

)
− 1

2𝜒𝑖 log det Σ̂𝑖 , (D.23)

subject to a semidefinite constraint,
Σ̂𝑖 ⪯ I. (D.24)

The optimization is a well-defined convex progamming problem, because log det function is concave and (D.24)
defines a convex (positive, semidefinite) cone. Recall that 𝛀𝑖

𝑑
is a diagonal matrix of eigenvalues, hence off-

diagonal elements in Σ̂𝑖 does not affect the value of tr
(
𝛀𝑖

𝑑
Σ̂𝑖

)
. Meanwhile, the Hadamard inequality for positive

definite matrices implies the determinant of Σ̂𝑖 is bounded by the product of its diagonal elements,

det Σ̂𝑖 ≤
𝑁∏
𝑗=1

Σ̂𝑖

(
𝑗 , 𝑗

)
.

The equality holds if and only if Σ̂𝑖 is diagonal. Therefore, it is straightforward to conclude that the optimal
solution to (D.23) and (D.24) must be diagonal. This observation allow us to convert the optimization into an
equivalent form,

min{
Σ̂𝑖(𝑘,𝑘)

}𝑁
𝑘=1

𝑁∑
𝑘=1

𝑑𝑖
𝑘
Σ̂𝑖 (𝑘, 𝑘) −

1
2𝜒𝑖

𝑁∑
𝑘=1

log Σ̂𝑖 (𝑘, 𝑘)

subject to constraints
Σ̂𝑖 (𝑘, 𝑘) ≤ 1; 𝑘 = 1, 2, ...𝑁

By convexity, the Kuhn-Tucker conditions allow us to deliver the unique solution to this problem,

Σ̂𝑖 (𝑘, 𝑘) = min

(
1, 𝜒𝑖

2𝑑𝑖
𝑘

)
; 𝑘 = 1, 2, ...𝑁

Subtitute this expression into the original solution (D.22) yields Lemma’s claim as desired. □

Now given the solution in the preceding lemma, in our rank-one model the solution reduces to

Σ𝑧|𝑥𝑖 = Σ
1
2
𝑧 U𝑖Σ̂𝑖U′

𝑖Σ
1
2
𝑧 = Σ

1
2
𝑧 U𝑖


min

(
1, 𝜒𝑖

2𝑑𝑖1

)
0

0 I𝑁−1

 U′
𝑖Σ

1
2
𝑧 (D.25)
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since 𝑑𝑖
𝑘
= 0;∀𝑘 = 2, 3, ...𝑁 . It follows that that when the exogenous marginal cost 𝜒𝑖

2𝑑𝑖1
≥ 1 is large enough, Σ̂𝑖 = 𝐼

and Σ𝑧|𝑥𝑖 = Σ𝑧 . That is, no information is collected (posterior equals prior) when information cost is too high.
Using the definition of positive eigenvalue 𝑑𝑖1, we arrives at the condition for no information acquisition,

𝜒𝑖 ≥ 𝜆𝑖𝜃𝑖V (mc𝑖𝑡)

as desired. On the other hand, the required threshold condition for processing information is written as

𝜒𝑖 < 2𝑑𝑖1 (D.26)

In this case, firms would choose to collect information.35 By the Bayesian updating formula,

SNR𝑖 = Hi
′V−1

𝑖 Hi = Σ−1
𝑧|𝑥𝑖 − Σ−1

𝑧 = Σ− 1
2

𝑧 U𝑖


(

2𝑑𝑖1
𝜒𝑖

− 1
)

0

0 0𝑁−1

 U′
𝑖Σ

− 1
2

𝑧

By construction, the signal-to-noise ratio matrix (SNR𝑖) is rank-one with one strictly positive singular value.
Therefore, the optimal signal dimension is 1,

dim (x𝑖𝜄𝑡) = rank (SNR𝑖) = 1

by Proposition 1 of Miao et al. (2022) and Tanaka et al. (2017). Next, we partition the unitary matrix U𝑖 comfortably
as U𝑖 =

[
ζ 𝑖1 ζ

𝑖
2
]

where eigenvector ζ 𝑖1 corresponds to 𝑑𝑖1 as we defined before, then the matrix SNR is given by

Hi
′V−1

𝑖 Hi = Σ− 1
2

𝑧 ζ
𝑖
1

(2𝑑𝑖1
𝜒𝑖

− 1
)
(ζ 𝑖1)′ Σ− 1

2
𝑧

Therefore, a natural solution for the univariate optimal signal is

V𝑖 =
𝜒𝑖

(2𝑑𝑖1 − 𝜒𝑖)
; Hi = (ζ 𝑖1)′ Σ− 1

2
𝑧 =

𝐺𝑖


Σ
1
2
𝑧 𝐺

′
𝑖




 ,
Note that the optimal signal structure can also be computed by the singular-value decomposition. In our univariate
case, the optimal signal is unique modulo a scalar normalization constant. When Hi is scaled by a constant 𝑏, V𝑖

is scaled by 𝑏2. Such normalization yields informationally-equivalent signals that produce identical posteriors,
and does not affect the sectoral and aggregate equilibrium of our model.36

Given this observation and the fact that mc𝑖𝑡 = 𝑝Δ
𝑖𝑡
= 𝑅

− 1
2

𝑖
G𝑖z𝑡 , we let 𝑏 = 𝑅

− 1
2

𝑖




Σ
1
2
𝑧 𝐺

′
𝑖




. Accordingly, the noise

35Of course, 𝑑𝑖1 is an endogenous objective to be determined in the general equilibrium. In our proof of equilibrium
existence in Proposition 3.5 , we provide conditions for 𝜒𝑖 such that (D.26) always holds in general equilibrium.

36Normalization does not change the response functions to fundamental shocks, but the responses to idosyncratic noise
shocks are scaled by 1

𝑏
. Since idiosyncratic noises wash out at the sectoral and aggregate level, our model equilibrium is

unaffected. In Appendix F.1, we provide further evidence.
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variance is multiplied by 𝑏2 = 𝑅−1
𝑖




Σ
1
2
𝑧 𝐺

′
𝑖




2
= V (mc𝑖𝑡). The normalized optimal signal is given by

𝑥𝑖𝜄𝑡 = mc𝑖𝑡 + 𝑢𝑖𝜄𝑡 , 𝑢𝑖𝜄𝑡 ∼ N
(
0, 𝜈2

𝑖

)
.

The endogenous noise variance is given by

𝜈2
𝑖 =

𝜒𝑖V (𝑚𝑐𝑖𝑡)
𝜆𝑖𝜃𝑖V (𝑚𝑐𝑖𝑡) − 𝜒𝑖

. (D.27)

where we use the fact that 𝑑𝑖1 =




Σ
1
2
𝑧 G′

𝑖




2
= 1

2𝜃𝑖𝜆𝑖V (𝑚𝑐𝑖𝑡). Note that by construction, the endogenous Gaussian
noise 𝑢𝑖𝜄𝑡 is independent of the marginal costs. The noise is also sector-specific in the sense that firms in the same
sector face noisy signals drawn from the same distribution. Within-sector information heterogeneity arises ONLY
from different realizations of noise 𝑢𝑖𝜄𝑡 . The underlying results in the Proposition applies to firms in ALL sectors,
𝑖 = 1, 2, ....𝑁 . The proof is now complete. □

D.4 Proof of Corrolary 3.1

Proof. In the preceding analysis, we have derived the optimal pricing decision rules for firm (𝑖 , 𝜄) under rational
inattention,

𝑝𝑖𝜄𝑡 = E [mc𝑖𝑡 | 𝑥𝑖𝜄𝑡] .

Given the optimal signal structure, Bayesian forecasting formula implies that

𝑝𝑖𝜄𝑡 = 𝜇𝑖𝑥𝑖𝜄𝑡 = 𝜇𝑖 (mc𝑖𝑡 + 𝑢𝑖𝜄𝑡) ; 𝜇𝑖 =
V (mc𝑖𝑡)

V (mc𝑖𝑡) + 𝜈2
𝑖

∈ [0, 1] (D.28)

given the independence between sectoral marginal cost and noises. Substitute the formula of endogenous noise
variance into the above expression,

𝜇𝑖 = 1 − 𝜒𝑖

𝜆𝑖𝜃𝑖V (mc𝑖𝑡)
as desired. Note that𝜇𝑖 is sector specific because all firms in sector 𝑖 solve an identical information choice problem.
Aggregating the individual firms’ decisions in sector 𝑖, we obtain

𝑝𝑖𝑡 = 𝜇𝑖mc𝑖𝑡

where idiosyncratic noises wash out
∫
𝑢𝑖𝜄𝑡𝑑𝜄 = 0. The proof is now complete. □

D.5 Proof of Proposition 3.3

Proof. We divide the proof in two parts.
Fixed-capacity case. Using similar approach of Lemma D.1, under fixed-capacity the optimal information choice
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is given by the following matrix optimization,

min
Σ𝑧|𝑥𝑖

tr
(
𝛀𝑖𝑧Σ𝑧|𝑥𝑖

)
s.t 0 ≺ Σ𝑧|𝑥𝑖 ⪯ Σ𝑧 ,

log det Σ𝑧 − log det Σ𝑧|𝑥𝑖 ≤ 2𝛿𝑖

In information theory, the above optimization leads to a classical distortion rate function (DRF),

𝐷∗ (𝛿𝑖) = min
Σ𝑧|𝑥𝑖

tr
(
𝛀𝑖𝑧Σ𝑧|𝑥𝑖

)
The problem can solved using the same techniques in Appendix D.3.37 The optimal distortion is given by

𝐷∗ = 𝑒−2𝛿𝑖 ||Σ
1
2
𝑧 G′

𝑖||2 (D.29)

The optimal signal is still one-dimensional with form

𝑥𝑖𝜄𝑡 = mc𝑖𝑡 + 𝑢𝑖𝜄𝑡 ; 𝑢𝑖𝜄𝑡 ∼ N
(
0, 𝜈2

𝑖

)
The signal noise variance is given by

𝜈2
𝑖 = 𝑅−1

𝑖

𝐷∗||Σ
1
2
𝑧 G′

𝑖
||2

||Σ
1
2
𝑧 G′

𝑖
||2 − 𝐷∗

Therefore, we can compute the signal precision (attention) as

𝜇𝑖 =
1/𝜈2

𝑖

1/𝜈2
𝑖
+ 1/V (mc𝑖𝑡)

=
||Σ

1
2
0 G′

𝑖
||2 − 𝐷∗

||Σ
1
2
0 G′

𝑖
||2

∈ (0, 1)

by recalling that V (mc𝑖𝑡) = 𝑅−1
𝑖




Σ 1
2
0 G′

𝑖




2
. Using (D.29), we obtain,

𝜇𝑖 = 1 − 𝑒−2𝛿𝑖

37In particular, we solve the following rate distortion function problem,

𝛿∗ (𝐷) = min
Σ𝑧|𝑥𝑖

log det Σ𝑧 − log det Σ𝑧|𝑥𝑖

s.t 0 ≺ Σ𝑧|𝑥𝑖 ⪯ Σ𝑧 ,

tr
(
𝛀𝑖𝑧Σ𝑧|𝑥𝑖

)
≤ 𝐷

which leads to a rate distortion function (RDF). The two problems are equivalent in the sense that 𝛿∗ (𝐷) and 𝐷∗ (𝛿𝑖)
are inverse functions of each other that define a one-to-one, monotone, continous mapping. The solution technique is
identical to the elastic attention model, except that the marginal cost of information (Lagrange multiplier) is endogenously
determined. The details of solution is available upon request.
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as desired.

Exogenous Information Case: For each firm 𝜄 in sector 𝑖, it observes 𝑁 independent signals about z𝑡 ,

𝑥𝑖𝜄 𝑗𝑡 = 𝑧 𝑗 ,𝑡 + 𝑢𝑖𝜄 𝑗𝑡 , 𝑢𝑖𝜄 𝑗𝑡 ∼ N
(
0, 𝜏𝑖𝜎2

𝑗

)
.

This implies firm’s forecats about sector shocks are given by

E𝑖𝜄𝑡

[
𝑧 𝑗𝑡 |𝑥𝑖𝜄 𝑗𝑡

]
=

𝜎2
𝑗

𝜎2
𝑗
+ 𝜏𝑖𝜎2

𝑗

𝑥𝑖𝜄 𝑗𝑡 =
1

1 + 𝜏𝑖
𝑥𝑖𝜄 𝑗𝑡 ; 𝑗 = 1, 2, ...𝑁 (D.30)

Therefore, the signal precisions for each sector shock are identical. In Appendix D.2, we show that the pricing
rule (D.14) holds for any information structure, with marginal cost function given by (3.3). Therefore, individual
firms set price according to

𝑝𝑖𝜄𝑡 = E𝑖𝜄𝑡

[
mc𝑖𝑡 |

{
𝑥𝑖𝜄 𝑗𝑡

}𝑁
𝑗=1

]
Without loss of generality, assume the equilibium function of marginal cost is given by mc𝑖𝑡 =m′z𝑡 =

∑𝑁
𝑗=1 𝑚 𝑗𝑧 𝑗𝑡 .

Then the pricing function follows

𝑝𝑖𝜄𝑡 = E𝑖𝜄𝑡


𝑁∑
𝑗=1

𝑚 𝑗𝑧 𝑗𝑡 |
{
𝑥𝑖𝜄 𝑗𝑡

}𝑁
𝑗=1

 =

𝑁∑
𝑗=1

𝑚 𝑗E𝑖𝜄𝑡

[
𝑧 𝑗𝑡 |

{
𝑥𝑖𝜄 𝑗𝑡

}𝑁
𝑗=1

]
=

𝑁∑
𝑗=1

𝑚 𝑗
1

1 + 𝜏𝑖
𝑥𝑖𝜄 𝑗𝑡 =

1
1 + 𝜏𝑖

𝑁∑
𝑗=1

𝑚 𝑗

(
𝑧 𝑗 ,𝑡 + 𝑢𝑖𝜄 𝑗𝑡

)
(D.31)

Integrate over all firms in the sector, idiosyncratic noises wash out. Hence,

𝑝𝑖𝑡 =

∫
1

1 + 𝜏𝑖

𝑁∑
𝑗=1

𝑚 𝑗

(
𝑧 𝑗 ,𝑡 + 𝑢𝑖𝜄 𝑗𝑡

)
𝑑𝜄 =

1
1 + 𝜏𝑖

𝑁∑
𝑗=1

𝑚 𝑗𝑧 𝑗𝑡 =
1

1 + 𝜏𝑖
mc𝑖𝑡 (D.32)

where the last equality follows from our initial conjecture. The proof is therefore complete. □

D.6 Proof of Proposition 3.4

Proof. In our previous derivations, we conjecture that the equilibrium sectoral price follows p𝑡 = ϕz𝑡 . The
marginal cost , or the ideal price, is given by

mc𝑡 = −z𝑡 +α𝑤𝑡 + Ap𝑡 ,

which generalizes (3.3). Meanwhile, Corrolary 3.1 indicates that equilibrium price vector is given by

p𝑡 = µmc𝑡
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where µ = diag
({
𝜇𝑖

}𝑁
𝑖=1

)
. Combining these two equation leads to

p𝑡 = (I − µA)−1µ (−I +ακ) z𝑡 ; ϕ = (I − µA)−1µ (−I +ακ) (D.33)

Therefore, the marginal cost can be solved as

mc𝑡 =
(
I + A (I − µA)−1µ

)
(−I +ακ) z𝑡

Next, we present a technical Lemma using the theory of nonnegative matrices. This result will be applied
repeatedly in subsequent analysis.

Lemma D.3. For any vector µ𝑣 ∈ [0, 1]𝑁 , the spectral radius of the non-negative matrix µA is strictly smaller than 1,
𝜌 (µA) < 1. Therefore, I − µA is a 𝑀 matrix.

Proof. By definition,

µA =


𝑎11𝜇1 𝑎12𝜇1 ... 𝑎1𝑁𝜇1

𝑎21𝜇2 𝑎22𝜇2 ... 𝑎2𝑁𝜇2
...

...
. . . ...

𝑎𝑁1𝜇𝑁 𝑎𝑁2𝜇𝑁 ... 𝑎𝑁𝑁𝜇𝑁


is nonnegative. Therefore, we employ the following Theorem in matrix analysis,

Theorem (Gershgorin Circle Theorem). For an 𝑁 × 𝑁 matrix L, each eigenvalue 𝑧 of L satisfy the following conditions,

|𝑧 − 𝑙𝑖𝑖| ≤
𝑁∑

𝑗=1;𝑗≠𝑖
|𝑙𝑖𝑖|, 𝑖 ∈ {1, 2, · · · , 𝑁}.

where 𝑙 denotes element of L.

By the Gershgorin circle theorem and the Perron-Frobenius Theorem (Berman and Plemmons (1994), Chapter 2),
the absolute value of maximal eigenvalue of µA, or its spectral radius 𝜌 (µA), is bounded above,38

𝜌 (µA) ≤ max
𝑖


𝑁∑
𝑗=1

𝑎𝑖 𝑗𝜇𝑗 : 𝑖 = 1, 2, ...𝑁
 ≤ max

𝑖


𝑁∑
𝑗=1

𝑎𝑖 𝑗 : 𝑖 = 1, 2, ...𝑁
 =



A



∞ < 1

38If µA >> 0 is strictly positive, then the Perron-Frobenius Theorem implies that there exists a unique positive and
maximal (dominant) eigenvalue that is equals to its spectral radius.
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where constant


A




∞ ∈ (0, 1) is the matrix operator norm induced by the maximal row-sum of A.39



A



∞ = max

𝑖


𝑁∑
𝑗=1

|𝑎𝑖 𝑗| : 𝑖 = 1, 2, ...𝑁
 = max

𝑖


𝑁∑
𝑗=1

𝑎𝑖 𝑗 : 𝑖 = 1, 2, ...𝑁
 (D.34)

By definition in Plemmons (1977), (I − µA) is a 𝑀 matrix, such that (I − µA)−1 exists and is nonnegative. In other
words, the matrix inverse admits series expansion as

(I − µA)−1
=

∞∑
𝑛=0

(µA)𝑛 = I + (µA) + (µA)2 + .... > 0

□

Given the matrix expansion, we have

I + A (I − µA)−1µ = I + A
(
I + (µA) + (µA)2 + ....

)
µ = I + (Aµ) + (Aµ)2 + .... = (I − Aµ)−1 > 0 (D.35)

where the matrix (I − Aµ)−1 is also a 𝑀 matrix with spectral radius bounded by 1. We also have an important
matrix identity

µ (I − Aµ)−1
= (I − µA)−1µ, (D.36)

which will be used repeatedly in subsequent analysis. Note that above results DOES NOT rely on the invertibility
of µ. In addition, the volatility of marginal cost is now given by

V (𝑚𝑐𝑖 ,𝑡) =



e𝑖(I − Aµ)−1(−I +ακ)Σ

1
2
𝑧




2
,

To summarize, the fixed-point of nominal rigidities (sectoral attentions) is given by (3.3) while influence matrix ϕ
is given by (D.33), as desired. The proof is now complete. □

D.7 Proof of Corrolary 3.2

Proof. First, we derive consumption deviations. In rationally inattentive equilibrium, the nominal GDP implied
by household’s budget constraint follow

𝑃
𝑓

𝑡 𝐶𝑡 = 𝑊𝑡𝐿𝑡 +
∑
𝑖

𝑃𝑖𝑡𝑌𝑖𝑡 (1 − ℰ𝑖𝑡) = 𝑊𝑡𝐿𝑡

(
1 −

𝑁∑
𝑖=1

Λ𝑖𝑡 (1 − ℰ𝑖𝑡)
)−1

(D.37)

where sectoral markup deviations are defined as ℰ𝑖𝑡 ≡ MC𝑖𝑡

𝑃𝑖𝑡

∫ (
𝑃𝑖𝑡𝑡

𝑃𝑖𝑡

)−𝜃𝑖

𝑑𝜄 and sectoral Domar weights are given

by Λ𝑖𝑡 =
𝑃𝑖𝑡𝑌𝑖𝑡

𝑃
𝑓

𝑡 𝐶𝑡

under rational inattention. Standard log-linearization leads to 1−∑𝑁
𝑖=1 Λ𝑖𝑡 (1 − ℰ𝑖𝑡) ≈ 1+∑𝑁

𝑖=1 𝜆𝑖𝜀𝑖𝑡 .

39Here we adopt Horn and Johnson (2012)’s notation on matrix norms.
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Meanwhile, log-linearized sectoral markups are given by

𝜀𝑖𝑡 = 𝑚𝑐𝑖𝑡 − 𝑝𝑖𝑡 − 𝜃𝑖

∫ (
𝑝𝑖𝜄𝑡 − 𝑝𝑖𝑡

)
= 𝑚𝑐𝑖𝑡 − 𝑝𝑖𝑡

We immediately have

𝑁∑
𝑖=1

𝜆𝑖𝜀𝑖𝑡 =
𝑁∑
𝑖=1

𝜆𝑖
©­«−𝑧𝑖𝑡 + 𝛼𝑖𝑤𝑡 +

𝑁∑
𝑗=1

𝑎𝑖 𝑗𝑝 𝑗𝑡 − 𝑝𝑖𝑡
ª®¬ = −𝑝 𝑓

𝑡 +
𝑁∑
𝑖=1

𝜆𝑖 (−𝑧𝑖𝑡 + 𝛼𝑖𝑤𝑡) = 𝑤𝑡 − 𝑝
𝑓

𝑡 −
𝑁∑
𝑖=1

𝜆𝑖𝑧𝑖𝑡 (D.38)

where we use the fact that
∑𝑁

𝑖=1 𝜆𝑖𝛼𝑖 = 1. Under rational inattention, the log-linearized budget constraint reads

𝑐𝑡 = 𝑤𝑡 − 𝑝
𝑓

𝑡 + ℓ𝑡 −
𝑁∑
𝑖=1

𝜆𝑖𝜀𝑖𝑡

subustitue (D.38) and the Euler equation into this equation, we get

𝑐𝑡 =
𝜂

1 + 𝛾𝜂

(
𝑤𝑡 − 𝑝

𝑓

𝑡

)
+ 1

1 + 𝛾𝜂

∑
𝑖

𝜆𝑖𝑧𝑖𝑡

In the proof of Proposition 3.1, we show that the equilibrium consumption is given by

𝑐∗𝑡 =
1 + 𝜂

1 + 𝛾𝜂

(
𝑤∗

𝑡 − 𝑝
𝑓 ,∗
𝑡

)
=

1 + 𝜂

1 + 𝛾𝜂
λ′z𝑡

In FI flexible-price economy, without monetary policy only the relative price
(
𝑤∗

𝑡 − 𝑝
𝑓 ,∗
𝑡

)
is determiate. Introducing

CIA constraint pins down wage and final good price index separately; however, money neutrality implies that the
relative price and the consumption (and labor) are independent of monetary policy. Without loss of generality,
we let 𝑤∗

𝑡 = 𝑤𝑡 , then the consumption deviation becomes,

𝑐𝑡 − 𝑐∗𝑡 = − 𝜂

1 + 𝛾𝜂

(
𝑝
𝑓

𝑡 − 𝑝
𝑓 ,∗
𝑡

)
= − 𝜂

1 + 𝛾𝜂

𝑁∑
𝑖=1

𝛽𝑖𝑒𝑖𝑡

as desired. Note the consumption deviation is independent of the choice of wage function in the FI economy. We
will expolit this property in the subsequent welfare analysis. Finally, we combine (D.9) and( D.33) and simplify
the algebra, we obtain that

e𝑡 =
(
(I − µA)−1µ(I − A)(−L + 1κ) − (I − A)−1(−I +ακ)

)
z𝑡

=

(
(L − 1κ) − (I − µA)−1µ(I − A)(L − 1κ)

)
z𝑡

=

(
I − (I − µA)−1µ(I − A)

)
(L − 1κ)z𝑡
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=

(
(I − µA)−1(I − µA − µ(I − A))

)
(L − 1κ)z𝑡

=

(
(I − µA)−1(I − µ)

)
(L − 1κ)z𝑡

= Q (L − 1κ) z𝑡

The proof is now complete. □

D.8 Proof of Proposition 3.5

Proof. I present the proofs of this proposition in two parts. The first part proves the equilibrium existence. The
second part establishes equilibrium uniqueness.

Part I: Proof of Existence.
Recall from (3.6), the price rigidities

{
𝜇𝑖

}𝑁
𝑖=1 solve the following fixed-point problem

𝜇𝑖 = 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)
, and V(mc𝑖𝑡) =




e𝑖(I − Aµ)−1(−I +ακ)𝚺
1
2
𝑧




2
.

Given the 𝑁-dimensional column vector of interest, µ𝑣 =
(
𝜇1 , 𝜇2 , ....𝜇𝑁

) ′ ∈ R𝑁 , we define an 𝑁-dimensional
vector-valued function 𝒯 (µ𝑣) : [0, 1]𝑁 ↦−→ R𝑁 as

𝒯 (µ𝑣) = (𝒯1 (µ) , 𝒯2 (µ) , ....𝒯𝑁 (µ))′ ; (D.39)

𝒯𝑖 (µ𝑣) = 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖




e𝑖(I − Aµ)−1(−I +ακ)𝚺
1
2
𝑧




2 . (D.40)

Then the fixed-point system can be written as

𝒯 (µ𝑣) = µ𝑣 .

By inspection, 𝒯 (µ) is continuous on [0, 1]𝑁 , and the Cartesian cube [0, 1]𝑁 ⊆ R𝑁 is compact and convex.
Therefore, we invoke the Brouwer fixed-point theorem in the 𝑁-dimensional Euclidean (Banach) space R𝑁 . We
only need to show that 𝒯 (µ) defines a self-map from [0, 1]𝑁 onto itself.

Using Lemma D.3, it is easy to see that (I − Aµ) is a 𝑀 matrix, such that (I − Aµ)−1 exists and is nonnegative. In
other words, the inverse admits the series expansion as

(I − Aµ)−1
=

∞∑
𝑛=0

(Aµ)𝑛 = I + (Aµ) + (Aµ)2 + .... > 0.

Now define the attention-distorted Leontief matrix,

∆𝜇 = (I − Aµ)−1 > 0, (D.41)
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and the wage-related coefficient matrix 𝚪 = (−I +ακ). Then follows a proposition.

Proposition D.1. If the monetary policy (wage) rule satisfy

𝜅𝑖 < 1; ∀𝑖 = 1, 2, ...𝑁 ,

then each sector’s ideal price (marginal cost) volatility has a positive lower bound,

V(mc𝑖𝑡) =



e𝑖(I − Aµ)−1(−I +ακ)𝚺

1
2
𝑧




2
≥ 𝜎2

𝑖 (1 − 𝜘𝑖𝜅𝑖)2 > 0,

where the auxiliary parameters {𝜘𝑖} is defined as

𝜘𝑖 =

{
1, 0 ≤ 𝜅𝑖 < 1

𝛼𝑖 , 𝜅𝑖 < 0
.

Proof. By definition of the Euclidean norm,40

V(mc𝑖𝑡) =



e𝑖(I − Aµ)−1(−I +ακ)𝚺

1
2
𝑧




2
=




e𝑖∆𝜇Γ𝚺
1
2
𝑧




2
≥




[∆𝜇Γ
]
𝑖𝑖

e𝑖𝚺
1
2
𝑧




2
(D.42)

where the scalar operator
[
·
]
𝑖

or
[
·
]
𝑖𝑖

denotes the 𝑖-th or 𝑖𝑖-th element of the vector or matrix, and we use the
fact that 𝚺z ≻ 0 is diagonal under our baseline assumption. Next, we observe that

∆𝜇Γ = (I − Aµ)−1 (−I +ακ)
=

[
I + (Aµ) + (Aµ)2 + ....

]
(−I +ακ)

= −
[
I + (Aµ) + (Aµ)2 + ....

]
+

[
I + (Aµ) + (Aµ)2 + ....

]
(ακ) .

(D.43)

By definition of A and µ,
0 ≤

[
(Aµ) + (Aµ)2 + ....

]
≤

[
(A) + (A)2 + ....

]
.

It is immediate that (D.43) is bounded by

∆𝜇Γ ≤ −I +
[
I + (Aµ) + (Aµ)2 + ....

]
(ακ) .

Notice that the 𝑖th row of matrix
[
I + (Aµ) + (Aµ)2 + ....

]
(ακ) is

[
I + (Aµ) + (Aµ)2 + ....

]
α𝜅𝑖 , for 𝑖 = 1, 2, ....𝑁 .

On one hand, when 𝜅𝑖 < 0,[
∆𝜇Γ

]
𝑖𝑖
≤

[
− I +

[
I + (Aµ) + (Aµ)2 + ....

]
(ακ)

]
𝑖𝑖

= −1 +
[ [

I + (Aµ) + (Aµ)2 + ....
]
α𝜅𝑖

]
𝑖

≤ −1 + 𝛼𝑖𝜅𝑖 < 0,

(D.44)

40The volatility bound we establish here is obviously non-unique and can be futher relaxed, but the current condition
suffices for our purpose.
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On the other hand, when 0 ≤ 𝜅𝑖 < 1, the column vector
[
I + (Aµ) + (Aµ)2 + ....

]
α𝜅𝑖 is bounded as[

I + (Aµ) + (Aµ)2 + ....
]
α𝜅𝑖 ≤

[
I + (A) + (A)2 + ....

]
α𝜅𝑖 = (I − A)−1α𝜅𝑖 = 1𝜅𝑖 ,

where I use the matrix property of (I − A)−1α = 1 = (1, 1, ...1)′. In this case,

[
∆𝜇Γ

]
𝑖𝑖
≤

[
− I +

[
I + (Aµ) + (Aµ)2 + ....

]
(ακ)

]
𝑖𝑖

≤ −1 + [𝜅𝑖1]𝑖 = −1 + 𝜅𝑖 < 0, (D.45)

where the last inequality follows from the assumption that 𝜅𝑖 < 1. Hence, by (D.44) and (D.45), all diagonal
elements of matrix ∆𝜇Γ are negative under the assumption of 𝜅𝑖 < 1, that is,

−
[
∆𝜇Γ

]
𝑖𝑖
> 0; ∀𝑖 = 1, 2, ...𝑁.

Therefore, using (D.42), we conclude that

V(mc𝑖𝑡) =



e𝑖∆𝜇Γ𝚺

1
2
𝑧




2
≥




[∆𝜇Γ
]
𝑖𝑖

e𝑖𝚺
1
2
𝑧




2
≥

{
𝜎2
𝑖 (1 − 𝜅𝑖)2 , 0 ≤ 𝜅𝑖 < 1

𝜎2
𝑖 (1 − 𝛼𝑖𝜅𝑖)2 , 𝜅𝑖 < 0

The proof is complete. □

By Proposition D.1, when κ satisfies 𝜅𝑖 < 1, ∀𝑖,

0 <
𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)
≤ 𝜒𝑖

𝜃𝑖𝜆𝑖𝜎2
𝑖
(1 − 𝜘𝑖𝜅𝑖)2

< 1, (D.46)

where the last inequality follow directly from our sufficiency condition in Proposition 3.5. The first inequality
follows that (I − Aµ)−1 exists and is finite, the sectoral volatilities are finite, and that all sectors face non-zero
information cost, i.e. 𝜒𝑖 > 0, ∀𝑖.

It is then immediate that for all sector 𝑖 = 1, 2, ...𝑁 and all vectors µ𝑣 ∈ [0, 1]𝑁 ,

𝒯𝑖 (µ𝑣) = 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖




e𝑖(I − Aµ)−1(−I +ακ)𝚺
1
2
𝑧




2 ∈ (0, 1), ∀𝑖 = 1, 2, ...𝑁 ; (D.47)

therefore, the 𝑁-dimensional vector-valued function 𝒯 (µ𝑣) : [0, 1]𝑁 ↦−→ [0, 1]𝑁 is a continuous self-map. Then
by the Brouwer fixed-point theorem (Hutson et al. (2005), Theorem 8.1.1), the equilibrium system in condition
(3.6) has a (interior) fixed-point.

Part II: Proof of Uniqueness.
The key novel result in Proposition 3.5 is the global uniqueness of general equilibrium. In models with endogenous
information frictions (e.g. RI or learning from endogenous price), unique equilibrium is hard to prove and
characterize, if not impossible (Adams (2019)). Due to the nonlinearity of equilibrium operator arosen from
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endogenous information, the Contraction Mapping Theorem cannot be applied. Instead, we employ the following
extension of the Schauder’s fixed-point theorem by Kellogg (1976):

Kellogg’s Fixed Point Theorem. Let 𝑋 be a real Banach space with a bounded convex open subset 𝐷 ⊆ 𝑋. Let 𝐷̄ be its
closure and let 𝐹 : 𝐷̄ → 𝐷̄ be a compact continuous map which is continuously Fréchet differentiable on 𝐷. Suppose that
(a) for each 𝑥 ∈ 𝐷, 1 is not an eigenvalue of Fréchet derivative 𝐹′ (𝑥), and (b) for each 𝑥 ∈ 𝜕𝐷 on boundary, 𝑥 ≠ 𝐹 (𝑥). Then
𝐹 has a unique fixed point.

Kellogg’s Theorem applies to infinite-dimensional Banach spaces. For discussions of this theorem, see Talman
(1978) and Smith and Stuart (1980). As note in Kellogg’s original paper, the compactness hypothesis can be
dropped in finite-dimensional problems. So in our proof, we will omit the compactness condition.

We proceed with the proof of uniqueness in three steps.
Step 1: Compute the Fréchet derivative. Suppose now µ𝑣 ∈ [0, 1]𝑁 . In our finite-dimensional problem, the
Fréchet derivative of the vector-valued function 𝒯 (µ𝑣) is the 𝑁 × 𝑁 Jacobian matrix,

𝒯 ′(µ𝑣) ≡ 𝜕𝒯
𝜕µ𝑣

= 𝒯µ𝑣 =



𝜕𝒯1
𝜕𝜇1

𝜕𝒯1
𝜕𝜇2

· · · 𝜕𝒯1
𝜕𝜇𝑁

𝜕𝒯2
𝜕𝜇1

𝜕𝒯2
𝜕𝜇2

· · · 𝜕𝒯2
𝜕𝜇𝑁

...
...

...
...

𝜕𝒯𝑁
𝜕𝜇1

𝜕𝒯𝑁
𝜕𝜇2

· · · 𝜕𝒯𝑁
𝜕𝜇𝑁


. (D.48)

On the other hand, we define a matrix of derivatives for the 𝑖th component of 𝒯 with respect to a 𝑁×𝑁 symmetric
matrix of variable, µ,

𝜕𝒯𝑖(µ)
𝜕µ

=



𝜕𝒯𝑖
𝜕𝜇11

𝜕𝒯𝑖
𝜕𝜇12

· · · 𝜕𝒯𝑖
𝜕𝜇1𝑁

𝜕𝒯𝑖
𝜕𝜇21

𝜕𝒯𝑖
𝜕𝜇22

· · · 𝜕𝒯𝑖
𝜕𝜇2𝑁

...
...

...
...

𝜕𝒯𝑖
𝜕𝜇𝑁1

𝜕𝒯𝑖
𝜕𝜇𝑁2

· · · 𝜕𝒯𝑖
𝜕𝜇𝑁𝑁


; 𝑖 = 1, 2, ...𝑁

here the diagonal elements 𝜇11 , 𝜇22 , ....𝜇𝑁𝑁 coincide with µ𝑣 . The following definition establishes the relation
between the Jacobian matrix and the matrix-valued derivatives.

Definition 3. The Jacobian matrix 𝒯µ𝑣 is obtained by extracting the diagonal elements of 𝜕𝒯𝑖(µ)
𝜕µ for each sector, arranged in

rows.

𝒯µ𝑣 =
𝜕𝒯 (µ𝑣)
𝜕µ𝑣

=

[
diag

(
𝜕𝒯1(µ)
𝜕µ

)
diag

(
𝜕𝒯2(µ)
𝜕µ

)
· · · diag

(
𝜕𝒯𝑁 (µ)
𝜕µ

)] ′
. (D.49)

Relation (D.49) holds either we treat µ as a general 𝑁 × 𝑁 symmetric matrix of variables or as a diagonal matrix
with off-diagonal restrictions of constant 0. Therefore, in the first step we treat µ as a general 𝑁 × 𝑁 variable
matrix, and exploit its diagonal (symmetric) property whenever is necessary.

It suffices to calculate the matrix of derivatives of the scalar function, 𝜕𝒯𝑖(µ)
𝜕µ . Recall that 𝒯𝑖(µ) = 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡 ) ,
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using the chain rule for matrix derivatives (Magnus and Neudecker (2007)),

𝜕𝒯𝑖(µ)
𝜕µ

=
𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)2
𝜕V(mc𝑖𝑡)

𝜕µ
, (D.50)

where the volatility of marginal cost admits matrix representation,

V(mc𝑖𝑡) =



e𝑖(I − Aµ)−1(−I +ακ)𝚺

1
2
𝑧




2
=




e𝑖∆𝜇Γ𝚺
1
2
𝑧




2
= e𝑖∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖 .

Recall that ∆𝜇 = (I − Aµ)−1 from (D.41). To compute the matrix derivative 𝜕V(mc𝑖𝑡 )
𝜕µ , we start with matrix differen-

tials and present 3 sets of basic results using matrix calculus.

Lemma D.4. Suppose 𝑔 is a scalar function of 𝑁 × 𝑁 matrix of variable µ, its differential follows,

𝑑𝑔(µ) = tr
(
𝜕𝑔(µ)
𝜕µ′ 𝑑µ

)
. (D.51)

Proof. By definition,

𝑑𝑔(µ) =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝜕𝑔

𝜕𝜇𝑖 𝑗
𝑑𝜇𝑖 𝑗

= tr

©­­­­­­«



𝜕𝑔
𝜕𝜇11

𝜕𝑔
𝜕𝜇21

· · · 𝜕𝑔
𝜕𝜇𝑁1

𝜕𝑔
𝜕𝜇12

𝜕𝑔
𝜕𝜇22

· · · 𝜕𝑔
𝜕𝜇𝑁2

· · ·
𝜕𝑔

𝜕𝜇1𝑁

𝜕𝑔
𝜕𝜇2𝑁

· · · 𝜕𝑔
𝜕𝜇𝑁𝑁




𝑑𝜇11 𝑑𝜇12 · · · 𝑑𝜇1𝑁

𝑑𝜇21 𝑑𝜇22 · · · 𝑑𝜇2𝑁

· · ·
𝑑𝜇𝑁1 𝑑𝜇𝑁2 · · · 𝑑𝜇𝑁𝑁


ª®®®®®®¬

= tr
(
𝜕𝑔(µ)
𝜕µ′ 𝑑µ

)
,

where tr(·) is the trace operator. □

The trace operator is linear and has basic properties

tr(XY ) = tr(Y X);
tr(X) = tr (X ′) ,

(D.52)

for any 𝑁 × 𝑁 matricesX and Y .

Lemma D.5. For matrix of variablesX , Y , and constant matrices B and C of conformable dimensions, we have following
differential results,

𝑑(BXC) = B𝑑(X)C; 𝑑
(
X−1) = −X−1𝑑(X)X−1;
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𝑑(tr(X)) = tr(𝑑(X)); 𝑑(XY ) = 𝑑(X)Y +X𝑑(Y ).

Proof. See Magnus and Neudecker (2007), p.160, p.208; Vetter (1973), p.357 □

Lemma D.6. Given constant 𝑁- dimensional column vectors b and c, a constant 𝑁 ×𝑁 matrix B, and a matrix of variables
X , the scalar function b′XBX ′c of variable matrixX admits differential

𝑑 (b′XBX ′c) = tr [b′𝑑(X)BX ′c + c′𝑑(X)B′X ′b] . (D.53)

Proof. Using formulas from the last lemma and the the basic properties of trace operator (linearity and (D.52)),
we deduce that

𝑑 (b′XBX ′c) = 𝑑 (tr (b′XBX ′c))
= tr (𝑑 (b′XBX ′c))
= tr (b′𝑑 (XBX ′) c)
= tr [b′ (𝑑(X)BX ′ +XB𝑑 (X ′)) c]
= tr [b′𝑑(X)BX ′c] + tr [b′XB𝑑 (X ′) c]
= tr [b′𝑑(X)BX ′c] + tr [c′𝑑(X)B′X ′b]
= tr [b′𝑑(X)BX ′c + c′𝑑(X)B′X ′b] .

□

Combining results from Lemma D.4 - D.6, we compute the differential of modified Leontief inverse ∆𝜇 = (I − Aµ)−1

as

𝑑
(
∆𝜇

)
= −∆𝜇𝑑

(
∆−1
𝜇

)
∆𝜇 = ∆𝜇A𝑑(µ)∆𝜇;

Similarly,
𝑑
(
∆′
𝜇

)
=

(
𝑑
(
∆𝜇

) ) ′
= ∆′

𝜇 (𝑑(µ))′ A′∆′
𝜇 = ∆′

𝜇𝑑(µ)A′∆′
𝜇 ,

where we exploit the diagonal (symmetric) property of µ in the last equality. Next, we derive the differential for
the volatility of marginal cost,

Lemma D.7. The volatility of marginal cost, V(mc𝑖𝑡) admits differential,

𝑑 [V(mc𝑖𝑡)] = 2 tr
[
∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇A𝑑(µ)
]
. (D.54)
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Proof. Combining results from Lemma D.4-D.6,

𝑑 [V(mc𝑖𝑡)] = 𝑑
(
e𝑖∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖
)

= tr
[
e𝑖

(
𝑑(∆𝜇)Γ𝚺𝑧Γ′∆′

𝜇 + ∆𝜇Γ𝚺𝑧Γ′𝑑(∆′
𝜇)

)
e′𝑖

]
= tr

[
e𝑖𝑑(∆𝜇)Γ𝚺𝑧Γ′∆′

𝜇e′𝑖 + e𝑖∆𝜇Γ𝚺𝑧Γ′𝑑(∆′
𝜇)e′𝑖

]
= 2 tr

[
e𝑖𝑑(∆𝜇)Γ𝚺𝑧Γ′∆′

𝜇e′𝑖
]

= 2 tr
[
e𝑖∆𝜇A𝑑(µ)∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖
]

= 2 tr
[
∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇A𝑑(µ)
]
,

where I use the rotational property of the trace operator. □

Note that by equation (D.51) in Lemma D.4 and equation (D.54) in Lemma D.7,

𝑑 [V(mc𝑖𝑡)] = tr
(
𝜕V(mc𝑖𝑡)

𝜕µ′ 𝑑µ

)
= tr

(
𝜕V(mc𝑖𝑡)

𝜕µ
𝑑µ

)
= 2 tr

[
∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇A𝑑(µ)
]
, (D.55)

because µ = µ′. Since 𝑑 (µ) is a matrix of differentials for variable µ, in order for (D.55) to hold, we must have

𝜕V(mc𝑖𝑡)
𝜕µ

= 2∆𝜇Γ𝚺𝑧Γ′∆′
𝜇e′𝑖e𝑖∆𝜇A (D.56)

by the method of undetermined coefficients.41

Note that equation (D.56) holds for general symmetric matrix of variables µ. In our special case in which µ is
diagonal, it is clear that 𝜕V(mc𝑖𝑡 )

𝜕µ is also diagonal, and

𝜕V(mc𝑖𝑡)
𝜕µ

= 2
[
∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇A
]
𝑑+

, (D.57)

where we define a linear annihilation operator
[
·
]
𝑑+ : R𝑁×𝑁 ↦−→ R𝑁×𝑁 that restricts all off-diagonal elements to

0 while keeps the diagonal elements unchanged. Consequently,(
𝜕V(mc𝑖𝑡)

𝜕µ

)
𝑛𝑛

= 2
(
∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇A
)
𝑛𝑛

; 𝑛 = 1, 2, ...𝑁

holds for every diagonal element.

Now, we are ready to conclude Step 1 by summarizing the properties of the Fréchet derivative for the general
equilibrium system.

41This is indeed the First Identification Theorem that links matrix differentials to Jacobian matrices of derivatives (Magnus
and Neudecker (2007); Theorem 5.6, 5.11 and Chapter 9). We also verify the correctness of formula (D.56) on the matrix
calculus website: www.matrixcalculus.org. In the univariate case 𝑁 = 1 and 𝜅 = 0, (D.56) reduces to the simple derivative(
𝜕V(mc𝑖𝑡 )

𝜕𝜇

)
= 2𝑎𝜎2

(1−𝑎𝜇)3 .
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Proposition D.2. The Fréchet derivative for the general equilibrium system (D.39) and (D.40) in terms of attention vector
µ𝑣 = 𝑑𝑖𝑎𝑔(µ) ∈ [0, 1]𝑁 exists and is given by

𝒯 ′(µ𝑣) ≡ 𝜕𝒯
𝜕µ𝑣

= 𝒯µ𝑣 =

[
diag

(
𝜕𝒯1(µ)
𝜕µ

)
diag

(
𝜕𝒯2(µ)
𝜕µ

)
· · · diag

(
𝜕𝒯𝑁 (µ)
𝜕µ

)] ′
.

For each sector 𝑖 = 1, 2, ...𝑁 ,

𝜕𝒯𝑖(µ)
𝜕µ

=
𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)2
𝜕V(mc𝑖𝑡)

𝜕µ
;

𝜕V(mc𝑖𝑡)
𝜕µ

= 2
[
∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇A
]
𝑑+

,

where ∆𝜇 = (I − Aµ)−1 is the attention-distorted Leontief matrix.
[
·
]
𝑑+ : R𝑁×𝑁 ↦−→ R𝑁×𝑁 is a linear annihilation operator

that restricts all off-diagonal elements to 0 while keep the diagonal elements unchanged.42

Step 2: Establishing Eigenvalue Bound. By the property of spectral radius and the Gershgorin Circle Theorem,

𝜌
(
𝒯µ𝑣

)
≤



𝒯µ𝑣




∞ = max

𝑖

𝑁∑
𝑗=1

��� (𝒯µ𝑣

)
𝑖 𝑗

��� ,
even if 𝒯µ𝑣 is not an non-negative matrix. By Definition 3, each row of the Jocabian matrix is simply the diagonals
of

(
𝜕𝒯𝑖(µ)
𝜕µ

)
; that is,

𝑁∑
𝑗=1

��� (𝒯µ𝑣

)
𝑖 𝑗

��� = tr
(����𝜕𝒯𝑖(µ)𝜕µ

����) ; 𝑖 = 1, 2, ...𝑁 ,

where the operator
�� · �� : R𝑁×𝑁 ↦−→ R𝑁×𝑁 transforms all elements of the matrix to their absolute values. Next, we

show that for each sector 𝑖 = 1, 2, ...𝑁 , the trace tr
(��� 𝜕𝒯𝑖(µ)

𝜕µ

���) is bounded above by 1, under our sufficiency condition
in Proposition 3.5.

We start with a lemma for the trace bound.

Lemma D.8. For each sector 𝑖 = 1, 2, ...𝑁 , the trace for the matrix derivatives after taking absolute values, tr
(��� 𝜕V(mc𝑖𝑡 )

𝜕µ

���) ,
is bounded above by

tr
(����𝜕V(mc𝑖𝑡)

𝜕µ

����) ≤ 2𝜍𝑖 ; 𝑖 = 1, 2...𝑁 , (D.58)

where 𝜍𝑖 = tr
(
L
��𝚪𝚺𝑧𝚪′

��L′e′
𝑖
e𝑖LA

)
, 𝑖 = 1, 2, ...𝑁 , and L = (I − A)−1.

Proof. For any 𝑁 × 𝑁 matrices X and Y , it is straightforward to verify that XY ≤
��XY �� ≤ ��X �� · ��Y ��. Combined

with the definition of Leontief inverse L = (I − A)−1 ≥ ∆𝜇, we derive

L
��Γ𝚺𝑧Γ′��L′e′𝑖e𝑖LA ≥ ∆𝜇

��Γ𝚺𝑧Γ′��∆′
𝜇e′𝑖e𝑖∆𝜇A ≥

��∆𝜇Γ𝚺𝑧Γ′∆′
𝜇e′𝑖e𝑖∆𝜇A

�� ≥ 0, (D.59)

42If κ = 0, we show in the Corrolary F.1 that 𝒯µ𝑣 ≥ 0 is nonnegative.
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since L , ∆𝜇, 𝚺𝑧 , e𝑖 and A are all nonnegative. Then, by equations (D.57) and (D.59),

tr
(����𝜕V(mc𝑖𝑡)

𝜕µ

����) = tr
(
2
���� [∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇A
]
𝑑+

����)
= 2 tr

(��∆𝜇Γ𝚺𝑧Γ′∆′
𝜇e′𝑖e𝑖∆𝜇A

��)
≤ 2 tr

(
∆𝜇

��Γ𝚺𝑧Γ′��∆′
𝜇e′𝑖e𝑖∆𝜇A

)
≤ 2 tr

(
L
��Γ𝚺𝑧Γ′��L′e′𝑖e𝑖LA

)
.

To ease notation, we define a column vector 𝜍 =

(
{𝜍𝑖}𝑁𝑖=1

)
, where 𝜍𝑖 = tr

(
L
��Γ𝚺𝑧Γ′��L′e′

𝑖
e𝑖LA

)
. Then the trace bound

for the absolute value of matrix derivatives follows

tr
(����𝜕V(mc𝑖𝑡)

𝜕µ

����) ≤ 2𝜍𝑖 ; 𝑖 = 1, 2...𝑁

as desired. □

Next, we deliver an upper bound for the eigenvalues of Jacobian matrix 𝒯µ𝑣 .

Proposition D.3. Suppose for each sector 𝑖 = 1, 2, ...𝑁 , we have following parameter restrictions,

𝜅𝑖 < 1, and 𝜒𝑖 < 𝜃𝑖𝜆𝑖

𝜎4
𝑖
(1 − 𝜘𝑖𝜅𝑖)4

2𝜍𝑖
, (D.60)

where 𝜘𝑖 is defined in Proposition D.1 and 𝜍𝑖 = tr
(
L
��Γ𝚺𝑧Γ′��L′e′

𝑖
e𝑖LA

)
for each sector. Then the eigenvalues of the Jacobian

matrix is bounded above by 1; that is

𝜌
(
𝒯µ𝑣

)
< 1. (D.61)

Proof. Recall that each row of the Jacobian matrix is simply the diagonals of matrix of derivatives
(
𝜕𝒯𝑖(µ)
𝜕µ

)
; that is,

𝑁∑
𝑗=1

��� (𝒯µ𝑣

)
𝑖 𝑗

��� = tr
(����𝜕𝒯𝑖(µ)𝜕µ

����) ; 𝑖 = 1, 2, ...𝑁.

Then, from equation (D.50),

tr
(����𝜕𝒯𝑖(µ)𝜕µ

����) =
𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)2
tr

(����𝜕V(mc𝑖𝑡)
𝜕µ

����)
≤ 𝜒𝑖

𝜃𝑖𝜆𝑖

[
𝜎2
𝑖
(1 − 𝜘𝑖𝑘𝑖)2

]2 tr
(����𝜕V(mc𝑖𝑡)

𝜕µ

����)
≤ 𝜒𝑖

𝜃𝑖𝜆𝑖𝜎4
𝑖
(1 − 𝜘𝑖𝑘𝑖)4

· 2𝜍𝑖
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< 1

holds for each sector 𝑖 = 1, 2....𝑁 . The first inequality follows from (D.46) in Proposition D.1, the second inequality
follows from (D.58), and the last inequality follows from our assumption (D.60).

Therefore, each row sum of 𝒯µ𝑣 is strictly smaller than 1, implying that



𝒯µ𝑣




∞ = max

𝑖

𝑁∑
𝑗=1

��� (𝒯µ𝑣

)
𝑖 𝑗

��� < 1

with finitely many sectors. Now by the Gishgorin Circle Theorem

𝜌
(
𝒯µ𝑣

)
≤



𝒯µ𝑣




∞ < 1

as desired.43 □

Now we are ready to proceed to the final step of the proof for Proposition 3.5.

Step 3: Verify Conditions in Kellogg’s Fixed Point Theorem. Let 𝑋 = R𝑁 , which is a finite-dimensional Banach
space. Let 𝐷 = (0, 1)𝑁 , it is clear that 𝐷 is bounded open convex open subset of 𝑋. Let 𝐷̄ = [0, 1]𝑁 be its closure
(which is also compact) and 𝑥 = µ𝑣 ∈ 𝐷̄. The function 𝐹(𝑥) = 𝒯 (µ𝑣) is defined in equation (D.40). By Proposition
D.3, the Fréchet derivative 𝐹′(𝑥) = 𝒯 ′(µ𝑣) exists and is continuous. For any µ𝑣 ∈ 𝐷 = (0, 1)𝑁 , Proposition D.3
states that

𝜌 (𝐹′ (𝑥)) = 𝜌
(
𝒯µ𝑣

)
< 1 (D.62)

if for each sector 𝑖 = 1, 2, ....𝑁 ,

𝜅𝑖 < 1, and 𝜒𝑖 < 𝜃𝑖𝜆𝑖

𝜎4
𝑖
(1 − 𝜘𝑖𝜅𝑖)4

2𝜍𝑖
.

Hence 1 cannot be an eigenvalue under the assumption of Proposition 3.5. Finally, by condition (D.46) and (D.47),
if

0 <
𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)
≤ 𝜒𝑖

𝜃𝑖𝜆𝑖𝜎2
𝑖
(1 − 𝜘𝑖𝜅𝑖)2

< 1,

then

𝒯𝑖 (µ𝑣) ∈ (0, 1), ∀𝑖 = 1, 2, ...𝑁 ;

for all sector 𝑖 = 1, 2, ...𝑁 and all vectors µ𝑣 ∈ [0, 1]𝑁 . Therefore, for each µ𝑣 ∈ 𝜕𝐷 on boundary,

µ𝑣 ≠ 𝒯 (µ𝑣)
43If κ = 0, then 𝒯µ𝑣 ≥ 0 and the Perron-Frobenious theorem leads to the same result.
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Now all conditions of Kellogg’s Fixed Point Theorem have been verified. It is clear that for all sectors 𝑖 = 1, 2, ...𝑁 ,
if

1. The monetary policy (wage) rule satisfies 𝜅𝑖 < 1;

2. The information cost 𝜒𝑖 satisfies 0 < 𝜒𝑖 < 𝜃𝑖𝜆𝑖 min
{
𝜎2
𝑖
(1 − 𝜘𝑖𝜅𝑖)2 ,

𝜎4
𝑖
(1−𝜘𝑖𝜅𝑖)4

2𝜍𝑖

}
, where 𝚪 = −I + ακ and

L = (I − A)−1, the auxiliary parameters {𝜘𝑖} and {𝜍𝑖} are defined as

𝜘𝑖 =

{
1, 0 ≤ 𝜅𝑖 < 1

𝛼𝑖 , 𝜅𝑖 < 0
, and 𝜍𝑖 = tr

(
L
��𝚪𝚺𝑧𝚪′

��L′e′𝑖e𝑖LA
)
,

then the general equilibrium system (3.6) has an unique fixed-point µ𝑣∗ ∈ (0, 1)𝑁 in the interior such that

µ𝑣∗ = 𝒯 (µ𝑣∗)

The entire proof of equilibrium existence and uniqueness is now complete. □

Remark: Proposition 3.5 provides a sufficient condition that ensures equilibrium uniqueness. The condition
can be further refined and relaxed in the following corrolary, utilizing the analytical form of 𝒯µ𝑣 obtained in
Proposition D.2.

Corollary D.1. Let 𝜌𝑚𝑎𝑥 be the maximal spectral radius of 𝒯µ𝑣 in Proposition D.2 in the domain of µ𝑣 . That is, consider
an optimization problem:

𝜌𝑚𝑎𝑥 = max
µ𝑣

𝜌
(
𝒯µ𝑣

)
subject to 𝜇𝑖 ∈ [0, 1], ∀𝑖 = 1, 2, ...𝑁 . If 𝜌𝑚𝑎𝑥 < 1 and

𝜅𝑖 < 1; 0 <
𝜒𝑖

𝜃𝑖𝜆𝑖
< 𝜎2

𝑖

(
1 − 𝜑𝑖𝜅𝑖

)2 ; ∀𝑖 = 1, 2, ...𝑁

where

𝜍𝑖 =

{
1, 0 ≤ 𝜅𝑖 < 1

𝛼𝑖 , 𝜅𝑖 < 0
; 𝑖 = 1, 2, ....𝑁

then the general equilibrium system (3.6) has an unique fixed-point µ𝑣∗ ∈ (0, 1)𝑁 in the interior.

Proof. Since 𝜌
(
𝒯µ𝑣

)
≤ 𝜌𝑚𝑎𝑥 < 1, (D.62) holds and 1 cannot be an eigenvalue. By condition (D.46) and (D.47), if

𝜅𝑖 < 1; 0 <
𝜒𝑖

𝜃𝑖𝜆𝑖
< 𝜎2

𝑖 (1 − 𝜍𝑖𝜅𝑖)2 ; ∀𝑖 = 1, 2, ...𝑁

which implies that 𝒯𝑖 (µ𝑣) ∈ (0, 1), for all sector 𝑖 = 1, 2, ...𝑁 and all vectors µ𝑣 ∈ [0, 1]𝑁 . Therefore, for each
µ𝑣 ∈ 𝜕𝐷 on boundary,

µ𝑣 ≠ 𝒯 (µ𝑣)
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It is clear that all conditions of Kellogg’s Fixed Point Theorem are satisfied, the general equilibrium system (3.6)
has an unique fixed-point µ𝑣∗ ∈ (0, 1)𝑁 . □

Remark: The optimization problem of spectral radius and attention response 𝒯 in Corollary D.1 are independent
of the equilibrium fixed-point system and can be numerically verified by Matlab. In our quantification, we verify
that the calibrated parameters satisfy Corollary D.1. Therefore, the calibrated model and the model under optimal
monetary policy both possess unique fixed-point in the interior.

D.9 Proof of Proposition 3.6

Proof. Recall that the households’ intratemporal Euler condition, 𝑊𝑡

𝑃𝑡
𝐶
−𝛾
𝑡 = 𝐿

1
𝜂

𝑡 , admits the log-linearized form as

ℓ𝑡 = 𝜂(𝑤𝑡 − 𝑝
𝑓

𝑡 ) − 𝜂𝛾𝑐𝑡 (D.63)

Using the derivation on nominal GDP in (D.37), consumers’ budget constraint can be written as

𝑐𝑡 = 𝑤𝑡 − 𝑝
𝑓

𝑡 + ℓ𝑡 −
𝑁∑
𝑖=1

𝜆𝑖𝜀𝑖𝑡 = 𝜂(𝑤𝑡 − 𝑝
𝑓

𝑡 ) − 𝛾𝜂𝑐𝑡 +
𝑁∑
𝑖=1

𝜆𝑖𝑧𝑖𝑡 =
𝜂

1 + 𝛾𝜂
(𝑤𝑡 − 𝑝

𝑓

𝑡 ) +
1

1 + 𝛾𝜂

𝑁∑
𝑖=1

𝜆𝑖𝑧𝑖𝑡 . (D.64)

where the second identity follows from (D.63) and (D.38), and the last identity from collapsing the same terms
of 𝑐𝑡 . Recall that 𝑝 𝑓

𝑡 = β′p𝑡 from the log-linearized form of the final price, then the log-linearized money supply
constraint can be written as

𝑚𝑡 = 𝑝
𝑓

𝑡 + 𝑐𝑡 =
𝜂

1 + 𝛾𝜂
𝑤𝑡 +

(
1 − 𝜂

1 + 𝛾𝜂

)
𝑝
𝑓

𝑡 + 1
1 + 𝛾𝜂

𝑁∑
𝑖=1

𝜆𝑖𝑧𝑖𝑡 =
𝜂

1 + 𝛾𝜂
𝑤𝑡 +

(
1 − 𝜂

1 + 𝛾𝜂

) ∑
𝑖

𝛽𝑖𝑝𝑖 ,𝑡 +
1

1 + 𝛾𝜂

𝑁∑
𝑖=1

𝜆𝑖𝑧𝑖 ,𝑡 .

as desired. □

D.10 Proof of Proposition 3.7

Proof. In the proof of Proposition F.1, we obtain the optimal posteior covariance matrix (MSE) matrix,

Σ𝑧|𝑥𝑖 = Σ𝑧 −
𝜒𝑖

2𝑅𝑖𝑑
𝑖
1𝜈

2
𝑖

(
Σ𝑧𝛀𝑖𝑧Σ𝑧

)
,

and by definition 𝜎̂2
𝑗|𝑖 = E

[ (
E

[
𝑧 𝑗𝑡 | 𝑥𝑖𝜄𝑡

]
− 𝑧 𝑗𝑡

)2 | 𝑥𝑖𝜄𝑡
]

is the diagonal element of the posterior matrix. If all sectors
have positive level of attention such that 𝜇𝑖 > 0, ∀𝑖 = 1, 2, ...𝑁 , we have following relations,

mc𝑖𝑡 = 𝑅
− 1

2
𝑖

G𝑖z𝑡 =
1
𝜇𝑖

𝑝𝑖𝑡
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Therefore, when Σz is diagonal, the diagonal element of posterior is given by

𝜎̂2
𝑗|𝑖 = 𝜎2

𝑗 −
𝜒𝑖

2𝑑𝑖1𝜈
2
𝑖

1
𝜇2
𝑖

𝜙2
𝑖 𝑗𝜎

4
𝑗

where we use the definition of weighting matrix 𝛀𝑖𝑧 . Applying our previous results, it is easy to deduce that
𝜒𝑖

2𝑑𝑖1𝜈
2
𝑖

= 1
V(𝑚𝑐𝑖𝑡 )+𝜈2

𝑖

. It then follows that

𝜎̂2
𝑗|𝑖 = 𝜎2

𝑗 −
𝜙2
𝑖 𝑗
𝜎4
𝑗

𝜇2
𝑖

(
V (𝑚𝑐𝑖𝑡) + 𝜈2

𝑖

) = 𝜎2
𝑗 −

𝜇𝑖𝜙2
𝑖 𝑗
𝜎4
𝑗∑𝑁

𝑘=1 𝜎
2
𝑘
𝜙2
𝑖𝑘

where I use the fact that 𝜇𝑖 =
V(𝑚𝑐𝑖𝑡 )

V(𝑚𝑐𝑖𝑡 )+𝜈2
𝑖

and V
(
𝑝𝑖𝑡

)
= 𝜇2

𝑖
V (𝑚𝑐𝑖𝑡). Finally, the relative attention allocation measure

is given by

𝜔𝑖 𝑗 =

𝜎2
𝑗
− 𝜎̂2

𝑗|𝑖

𝜎2
𝑗

= 𝜇𝑖

𝜙2
𝑖 𝑗
𝜎2
𝑗∑𝑁

𝑘=1 𝜎
2
𝑘
𝜙2
𝑖𝑘

By construction, the fraction
𝜙2
𝑖 𝑗
𝜎2
𝑗∑𝑁

𝑘=1 𝜎
2
𝑘
𝜙2
𝑖𝑘

is a well-defined probability measure,

𝜙2
𝑖 𝑗
𝜎2
𝑗∑𝑁

𝑘=1 𝜎
2
𝑘
𝜙2
𝑖𝑘

∈ [0, 1];
𝑁∑
𝑗=1

𝜙2
𝑖 𝑗
𝜎2
𝑗∑𝑁

𝑘=1 𝜎
2
𝑘
𝜙2
𝑖𝑘

= 1; ∀𝑖 = 1, 2, ..𝑁.

Therefore, we have
∑𝑁

𝑗=1 𝜔𝑖 𝑗 = 𝜇𝑖 as desired. The proof is complete. □
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E. Optimal Monetary Policy

E.1 Proof of Lemma 4.1

Proof. To study the optimal policy problem, we define such loss as difference of the representative household’s
utilities in the RI economy and in a reference economy with perfect information. In what follows, variables in the
full-information (FI) economy are denoted with *.

Following La’O and Tahbaz-Salehi (2022), we first derive the second-order approximation of the welfare function
as

E
[
𝑈𝑡 −𝑈∗

𝑡

]
≈ −1

2

[
𝑁∑
𝑖=1

𝜆𝑖𝜃𝑖𝒟𝑖 + (𝛾 + 1/𝜂)V
(
𝑐𝑡 − 𝑐∗𝑡

)
+

𝑁∑
𝑖=0

𝜆𝑖𝒞𝑖

]
, (E.1)

where {𝒞𝑖 ,𝒟𝑖}𝑁𝑖=1 are defined in the Lemma. The output-gap volatility is defined as,

V
(
𝑐𝑡 − 𝑐∗𝑡

)
=

1
(𝛾 + 1/𝜂)2E

©­«
𝑛∑
𝑗=1

𝛽 𝑗𝑒 𝑗𝑡
ª®¬

2

(E.2)

𝑈𝑡 and 𝑈∗
𝑡 are the utilities in the RI and FI economies, respectively.44 The expectation operator in (4.1) is defined

with respect to the central bank (CB)’s information set whose information is assumed to be perfect. For brevity,
we omit the algebraic details of this second-order approximation.

Using the equilibrium optimal signal structure we derive in Section 3, the within-sector pricing error variation in
sector 𝑖 is given by

𝒟𝑖 =

∫ 1

0

(
𝑝𝑖𝜄𝑡 − 𝑝𝑖𝑡

)2
𝑑𝜄 = 𝜇2

𝑖E𝑢
2
𝑖𝜄𝑡 = 𝜇2

𝑖 𝜈
2
𝑖 =

𝜒𝑖

𝜃𝑖𝜆𝑖
𝜇𝑖 (E.3)

where the second and third equality follows from the fact that firms within sector 𝑖 solve a identical information
acquisition problem with endogenous noises drawn from the same distribution: 𝑢2

𝑖𝜄𝑡 ∼ 𝑁(0, 𝜈2
𝑖
). The last equality

follows from the optimal solution for noise variance,

𝜈2
𝑖 =

𝜒𝑖

𝜃𝑖𝜆𝑖
V(mc𝑖𝑡)

V(mc𝑖𝑡) − 𝜒𝑖

𝜃𝑖𝜆𝑖

=
1
𝜇𝑖

𝜒𝑖

𝜃𝑖𝜆𝑖
; (E.4)

(E.3) implies the variations of within-sector pricing errors are determined by the nominal rigidity 𝜇𝑖 and the
variance of endogenous noise 𝜈2

𝑖
. The term𝒟𝑖 vanishes when information is perfect (𝜈2

𝑖
= 0), or when information

is completely rigid (𝜇𝑖 = 0). If firms collect information subject to capacity constraint, price flexibility and noise
variance move in the opposite direction – higher attentiveness is accompanied by lower variances, with their
product equals to a constant 𝜒𝑖

𝜃𝑖𝜆𝑖
> 0. If the information cost 𝜒𝑖 > 0 is strictly positive, the minimally attainable

44Both economies are approximated around the same deterministic steady-state. In the flexible-price economy, price
levels are indeterminate. We normalize wage such that 𝑊 ∗

𝑡
= 𝑊𝑡 , where 𝑊𝑡 in the RI economy is uniquely pinned down by

the monetary policy.
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noise is achieved at the maximum level of price flexibility 𝜇𝑖 = 1 as the volatility of profit-maximizing price
converges to infinity,

lim
V(mc𝑖𝑡 )→∞

𝜈2
𝑖 = lim

𝜇𝑖→1
𝜈2
𝑖 =

𝜒𝑖

𝜃𝑖𝜆𝑖
> 0 (E.5)

That is, even with fully-flexible price, full-information equilibrium cannot be restored given the positive level
of noise in RI equilibrium. Meanwhile, (E.3) and (E.4) indicate the price flexibility 𝜇𝑖 plays a dominant role in
driving within-sector pricing-error dispersion. □

E.2 Proof of Lemma 4.2

Proof. Consider the objective function in (4.1), we express the objective in matrix form,

E
[
𝑈𝑡 −𝑈∗

𝑡

]
= −1

2

[
χ𝑇µ𝑣 + 1

(𝛾 + 1/𝜂)β
𝑇𝚺𝑒β + λ𝑇 diag (𝚺𝑒) − λ𝑇 diag

(
𝐴𝚺𝑒𝐴

𝑇
)
− β𝑇𝚺𝑒β

]
(E.6)

where we use the expression in (3.9) to define the covariance matrix of the pricing errors as

Σ𝑒 = Q (L − 1κ)𝚺𝑧 (L − 1κ)′ Q′ ⪰ 0.

The central bank’s goal is to maximize the expected welfare under rational inattention, or equivalently, minimize
the expected welfare loss due to RI. Therefore, we define the CB’s optimal policy problem formally as

Definition 4. The central bank designs optimal monetary policy by solving the following constrained optimization problem

min
{µ𝑣 ,κ}

Δ𝑈𝑤𝑖𝑡ℎ𝑖𝑛
𝑡 + Δ𝑈𝑂𝐺

𝑡 + Δ𝑈 𝑎𝑐𝑟𝑜𝑠𝑠
𝑡 =

1
2

[
χ𝑇µ𝑣 + 1

(𝛾 + 1/𝜂)β
𝑇𝚺𝑒β + λ𝑇 diag (𝚺𝑒) − λ𝑇 diag

(
A𝚺𝑒A𝑇

)
− β𝑇𝚺𝑒β

]
subject to the equilibrium fixed-point for each sector 𝑖 = 1, 2...𝑁 ,

𝜇𝑖 = max
{
0, 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)

}
; V(mc𝑖𝑡) =




e𝑖

[
(I − Aµ)−1 (−I +ακ)

]
𝚺1/2
𝑧




2
. (E.7)

The proof is now complete. □

E.3 Proof of Proposition 4.1

Proof. By Proposition 3.3, the optimal signal structure under fixed-capacity is identical to the elastic attention
model. The sectoral nominal rigidities/attentions are exogenously given by 𝜇𝑖 = 1 − 𝑒−2𝛿𝑖 = 1

1+𝜏𝑖 , ∀𝑖 = 1, 2, ...𝑁 .
Under welfare objective function (E.6), we only need to update the expression for the first term of welfare loss.
By (E.3), the within-sector cross-section dispersion of pricing errors are given by

𝒟𝑖 = E
[∫ 1

0

(
𝑝𝑖𝜄𝑡 − 𝑝𝑖𝑡

)2
𝑑𝜄

]
= 𝜇2

𝑖E𝑢
2
𝑖𝜄𝑡 = 𝜇2

𝑖 𝜈
2
𝑖
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Using the results in the proof of Proposition 3.3, we note that an important feature of fixed-capacity model is that
the variance of endogenous noise is proportional to the volatility of marginal cost:

𝜈2
𝑖 = 𝑅−1

𝑖

𝑒−2𝜅𝑖

1 − 𝑒−2𝜅𝑖




Σ 1
2
z G′

𝑖




2
=

𝑒−2𝜅𝑖

1 − 𝑒−2𝜅𝑖
V (mc𝑖𝑡) . (E.8)

It then follows from the above equation
𝒟𝑖 = 𝜇𝑖(1 − 𝜇𝑖)V (mc𝑖𝑡) . (E.9)

On the other hand, it follows from (D.31) and (D.32) that under exogenous information, the within-sector cross-
section dispersion of pricing errors are given by

𝒟𝑖 =
1

(1 + 𝜏𝑖)2
∫ 𝑁∑

𝑗=1
𝑚2

𝑗 𝑢
2
𝑖𝜄 𝑗𝑡𝑑𝜄 =

𝜏𝑖

(1 + 𝜏𝑖)2
𝑁∑
𝑗=1

𝑚2
𝑗 𝜎

2
𝑗 = 𝜇𝑖(1 − 𝜇𝑖)V (mc𝑖𝑡) (E.10)

Therefore, (E.10) and (E.9) coincides. More generally, given exogenous µ, the welfare loss functions under two
cases are identical, given by (4.1). Since the attention channel of monetary policy is muted in these two cases, the
unconstrained optimal monetary policy coincides in these two economies. The solution to the optimal policy is
straightforward. The only updated component is given by the derivative of the within-sector welfare loss with
respect to sectoral wage rule 𝜅𝑠 ,

𝜕Δ𝑈𝑤𝑖𝑡ℎ𝑖𝑛
𝑡

𝜕𝜅𝑠
=

𝑑E
[∑𝑁

𝑖=1 𝜆𝑖𝜃𝑖𝜗𝑖𝑡

]
𝑑𝜅𝑠

=

𝑁∑
𝑖=1

𝜆𝑖𝜃𝑖𝜇𝑖

(
1 − 𝜇𝑖

) 𝑑𝑉𝑖

𝑑𝜅𝑠
(E.11)

where we define𝑉𝑖 ≡ V (mc𝑖𝑡) to simplify notation. In the Proof of Proposition 4.2, (E.37), we express the following
matrix derivative as 

𝜕𝑉1(κ)
𝜕κ

𝜕𝑉2(κ)
𝜕κ
...

𝜕𝑉𝑁 (κ)
𝜕κ


= 2 diag (ρ)µ−1 (I − Q) (−L + 1κ)𝚺z (E.12)

Using the techniques developed in the proof of Lemma 4.3, Proposition E.2, and Proposition 4.3, we write the
first order condition w.r.t κ in row:[
λ′ diag

({
𝜃𝑖𝜌𝑖

(
1 − 𝜇𝑖

)}𝑁
𝑖=1

)
(I − Q) +

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
Q

]
(L − 1κ) = 0′

A-51



Then we obtain the optimal policy weight as

φ =λ′ diag
({
𝜃𝑖𝜌𝑖

(
1 − 𝜇𝑖

)}𝑁
𝑖=1

)
+

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
L

(
µ−1 − I

)
(E.13)

where we use the fact that ϕ = (I − Q) (L − 1κ). Written in scalars,

𝜑𝑒𝑥𝑜
𝑖 = 𝜑

𝑓 𝑖𝑥

𝑖
=

𝜇𝑖𝜆𝑖𝜃𝑖𝜌𝑖 +
(
1 − 𝜌0

)
(𝛾 + 1/𝜂)𝜆𝑖 +

𝑁∑
𝑗=1

(
1 − 𝜇𝑖

)
𝜆 𝑗𝜌 𝑗 𝑙 𝑗𝑖 +

(
𝜌0 − 𝜌𝑖

)
𝜆𝑖


(

1
𝜇𝑖

− 1
)

(E.14)

for each sector 𝑖 = 1, 2, ..𝑁 . We refer readers to the proof of Lemma 4.3, Proposition E.2, and Proposition 4.3
for the transformation of the price-stabilization and the algebra details that lead to (E.14). The proof is now
complete. □

E.4 Proof of Proposition 4.2

Proof. In the fixed-point system (3.6), the implicit functions of µ and κ can be expressed as

𝜇𝑖 = 𝒯𝑖(µ,κ); 𝑖 = 1, 2, ...𝑁 , (E.15)

where 𝒯𝑖(µ,κ) is a scalar best response function of µ and κ,

𝒯𝑖(µ,κ) = 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖𝑉𝑖(µ,κ)
; 𝑉𝑖(µ,κ) = V(mc𝑖𝑡); 𝑖 = 1, 2, ...𝑁. (E.16)

Take differential on both sides of (E.15),

𝑑𝒯𝑖 (µ,κ) = 𝑑𝜇𝑖 ; 𝑖 = 1, 2, ...𝑁.

We write 𝒯𝑖 (µ,κ) briefly as 𝒯𝑖 , then 𝑑𝒯𝑖
𝑑κ =

𝑑𝜇𝑖

𝑑κ ; 𝑖 = 1, 2, ...𝑁.. In matrix form,[
𝑑𝒯1
𝑑κ′

𝑑𝒯2
𝑑κ′ · · · 𝑑𝒯𝑁

𝑑κ′

]
=

[
𝑑𝜇1

𝑑κ′
𝑑𝜇2

𝑑κ′ · · · 𝑑𝜇𝑁

𝑑κ′

]
. (E.17)

In the best response function (E.15), given κ, the differential of 𝜇𝑖 can be written as

𝑑𝜇𝑖 =

𝑁∑
𝑗=1

𝜕𝜇𝑖

𝜕𝜅 𝑗
𝑑𝜅 𝑗 ; 𝑖 = 1, 2, ...𝑁 ,

which implies that
𝑑𝜇𝑖

𝑑𝜅𝑠
=

𝜕𝜇𝑖

𝜕𝜅𝑠
; 𝑖 , 𝑠 = 1, 2, ...𝑁. (E.18)
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Now consider differential of the best response function 𝒯𝑖 ,

𝑑𝒯𝑖 =
(
𝜕𝒯𝑖
𝜕𝜇1

𝑑𝜇1 +
𝜕𝒯𝑖
𝜕𝜇2

𝑑𝜇2 + · · · 𝜕𝒯𝑖
𝜕𝜇𝑁

𝑑𝜇𝑁

)
+

(
𝜕𝒯𝑖
𝜕𝜅1

𝑑𝜅1 +
𝜕𝒯𝑖
𝜕𝜅2

𝑑𝜅2 + · · · 𝜕𝒯𝑖
𝜕𝜅𝑁

𝑑𝜅𝑁

)
; 𝑖 = 1, 2, ...𝑁. (E.19)

Dividing both sides of equation (E.19) by each sector’s 𝜅𝑖 , respectively,

𝑑𝒯𝑖
𝑑𝜅1

=

(
𝜕𝒯𝑖
𝜕𝜇1

𝑑𝜇1

𝑑𝜅1
+ 𝜕𝒯𝑖

𝜕𝜇2

𝑑𝜇2

𝑑𝜅1
+ · · · 𝜕𝒯𝑖

𝜕𝜇𝑁

𝑑𝜇𝑁

𝑑𝜅1

)
+

(
𝜕𝒯𝑖
𝜕𝜅1

)
𝑑𝒯𝑖
𝑑𝜅2

=

(
𝜕𝒯𝑖
𝜕𝜇1

𝑑𝜇1

𝑑𝜅2
+ 𝜕𝒯𝑖

𝜕𝜇2

𝑑𝜇2

𝑑𝜅2
+ · · · 𝜕𝒯𝑖

𝜕𝜇𝑁

𝑑𝜇𝑁

𝑑𝜅2

)
+

(
𝜕𝒯𝑖
𝜕𝜅2

)
· · ·
𝑑𝒯𝑖
𝑑𝜅𝑁

=

(
𝜕𝒯𝑖
𝜕𝜇1

𝑑𝜇1

𝑑𝜅𝑁
+ 𝜕𝒯𝑖

𝜕𝜇2

𝑑𝜇2

𝑑𝜅𝑁
+ · · · 𝜕𝒯𝑖

𝜕𝜇𝑁

𝑑𝜇𝑁

𝑑𝜅𝑁

)
+

(
𝜕𝒯𝑖
𝜕𝜅𝑁

)
.

(E.20)

Consolidating (E.20) into matrix form and combining (E.18), we get

𝑑𝒯𝑖
𝑑κ′ =



𝜕𝜇1
𝜕𝜅1

𝜕𝜇2
𝜕𝜅1

· · · 𝜕𝜇𝑁

𝜕𝜅1
𝜕𝜇1
𝜕𝜅2

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇𝑁

𝜕𝜅2
...

...
...

...
𝜕𝜇1
𝜕𝜅𝑁

𝜕𝜇2
𝜕𝜅𝑁

· · · 𝜕𝜇𝑁

𝜕𝜅𝑁





𝜕𝒯𝑖
𝜕𝜇1
𝜕𝒯𝑖
𝜕𝜇2
...

𝜕𝒯𝑖
𝜕𝜇𝑁


+



𝜕𝒯𝑖
𝜕𝜅1
𝜕𝒯𝑖
𝜕𝜅2
...

𝜕𝒯𝑖
𝜕𝜅𝑁


,

More specifically,

[
𝑑𝒯1
𝑑κ′

𝑑𝒯2
𝑑κ′ · · · 𝑑𝒯𝑁

𝑑κ′

]
=



𝜕𝜇1
𝜕𝜅1

𝜕𝜇2
𝜕𝜅1

· · · 𝜕𝜇𝑁

𝜕𝜅1
𝜕𝜇1
𝜕𝜅2

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇𝑁

𝜕𝜅2
...

...
...

...
𝜕𝜇1
𝜕𝜅𝑁

𝜕𝜇2
𝜕𝜅𝑁

· · · 𝜕𝜇𝑁

𝜕𝜅𝑁





𝜕𝒯1
𝜕𝜇1

𝜕𝒯2
𝜕𝜇1

· · · 𝜕𝒯𝑁
𝜕𝜇1

𝜕𝒯1
𝜕𝜇2

𝜕𝒯2
𝜕𝜇2

· · · 𝜕𝒯𝑁
𝜕𝜇2

...
...

...
...

𝜕𝒯1
𝜕𝜇𝑁

𝜕𝒯2
𝜕𝜇𝑁

· · · 𝜕𝒯𝑁
𝜕𝜇𝑁


+



𝜕𝒯1
𝜕𝜅1

𝜕𝒯2
𝜕𝜅1

· · · 𝜕𝒯𝑁
𝜕𝜅1

𝜕𝒯1
𝜕𝜅2

𝜕𝒯2
𝜕𝜅2

· · · 𝜕𝒯𝑁
𝜕𝜅2

...
...

...
...

𝜕𝒯1
𝜕𝜅𝑁

𝜕𝒯2
𝜕𝜅𝑁

· · · 𝜕𝒯𝑁
𝜕𝜅𝑁


(E.21)

We define two canonical Jacobian matrices of 𝒯𝑖 with respect to µ and κ, respectively as

𝒯µ𝑣 ≡ 𝜕𝒯
𝜕µ𝑣

=



𝜕𝒯1
𝜕𝜇1

𝜕𝒯1
𝜕𝜇2

· · · 𝜕𝒯1
𝜕𝜇𝑁

𝜕𝒯2
𝜕𝜇1

𝜕𝒯2
𝜕𝜇2

· · · 𝜕𝒯2
𝜕𝜇𝑁

...
...

...
...

𝜕𝒯𝑁
𝜕𝜇1

𝜕𝒯𝑁
𝜕𝜇2

· · · 𝜕𝒯𝑁
𝜕𝜇𝑁


, and 𝒯κ ≡ 𝜕𝒯

𝜕κ
=



𝜕𝒯1
𝜕𝜅1

𝜕𝒯1
𝜕𝜅2

· · · 𝜕𝒯1
𝜕𝜅𝑁

𝜕𝒯2
𝜕𝜅1

𝜕𝒯2
𝜕𝜅2

· · · 𝜕𝒯2
𝜕𝜅𝑁

...
...

...
...

𝜕𝒯𝑁
𝜕𝜅1

𝜕𝒯𝑁
𝜕𝜅2

· · · 𝜕𝒯𝑁
𝜕𝜅𝑁


, (E.22)
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where 𝒯µ𝑣 is identical to the definition in euqation (D.48). Similarly, we define the canonical Jacobian matrix of
µ𝑣 with respect to κ as,

𝐽µ𝑣 (κ) ≡ 𝑑µ𝑣

𝑑κ
=



𝜕𝜇1
𝜕𝜅1

𝜕𝜇1
𝜕𝜅2

· · · 𝜕𝜇1
𝜕𝜅𝑁

𝜕𝜇2
𝜕𝜅1

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇2
𝜕𝜅𝑁

...
...

...
...

𝜕𝜇𝑁

𝜕𝜅1

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇𝑁

𝜕𝜅𝑁


, (E.23)

which is defined implicitly by the equilibrium fixed-point system. Note the above equation contains all the
information regarding the dependence of the diagonal matrix µ on κ. Using the above notations, we express
equation (E.21) as [

𝑑𝒯1
𝑑κ′

𝑑𝒯2
𝑑κ′ · · · 𝑑𝒯𝑁

𝑑κ′

]
= 𝐽µ𝑣 (κ)′ 𝒯 ′

µ𝑣 + 𝒯 ′
κ .

On the other hand, we rearrange equation (E.18) into matrix form,

[
𝑑𝜇1

𝑑κ′
𝑑𝜇2

𝑑κ′ · · · 𝑑𝜇𝑁

𝑑κ′

]
=



𝜕𝜇1
𝜕𝜅1

𝜕𝜇2
𝜕𝜅1

· · · 𝜕𝜇𝑁

𝜕𝜅1
𝜕𝜇1
𝜕𝜅2

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇𝑁

𝜕𝜅2
...

...
...

...
𝜕𝜇1
𝜕𝜅𝑁

𝜕𝜇2
𝜕𝜅𝑁

· · · 𝜕𝜇𝑁

𝜕𝜅𝑁


= 𝐽µ𝑣 (κ)′ . (E.24)

Substituting (E.23) and (E.24) into (E.17) yields

𝐽µ𝑣 (κ)′ 𝒯 ′
µ𝑣 + 𝒯 ′

κ = 𝐽µ𝑣 (κ)′ .

Therefore,
𝐽µ𝑣 (κ) ≡ 𝑑µ𝑣

𝑑κ
=

[
I − 𝒯µ𝑣

]−1 𝒯κ , (E.25)

As desired. Next, we proceed to solve the analytical form of two Jacobian matrices 𝒯µ𝑣 and 𝒯κ. Define an operator[
·
]
(𝑖 , 𝑗) : R𝑚×𝑛 ↦−→ R that extracts the 𝑖 𝑗th element of any 𝑚 × 𝑛 matrix—-a notation similar to computer

programming. Similarly,
[
·
]
(𝑖 ,:) : R𝑚×𝑛 ↦−→ R1×𝑛 extracts the 𝑖 row, and

[
·
]
(:, 𝑗) : R𝑚×𝑛 ↦−→ R𝑚×1 extracts the 𝑗

column of matrices. The next Lemma presents a matrix transformation result.

Lemma E.1. Given a 𝑁-dimensional row vector v and two 𝑁 × 𝑁 matrices X and Y, it follows that


ve′1e1X
ve′2e2X

...

ve′
𝑁

e𝑁X


= diag(v′)X; and



(
diag

(
Xe′1e1Y

) ) ′(
diag

(
Xe′2e2Y

) ) ′
...(

diag
(
Xe′

𝑁
e𝑁Y

) ) ′

= X′ ⊙ Y,

where ⊙ denotes the Hadamard product, and e𝑖 denotes the 𝑖th standard basis (row) vector.
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Proof. By definition, 
ve′1e1X
ve′2e2X

...

ve′
𝑁

e𝑁X


=


ve′1e1

ve′2e2
...

ve′
𝑁

e𝑁


X = diag(v′)X.

Next, we observe that(
diag

(
Xe′𝑖e𝑖Y

) ) ′
=

(
[X](:,𝑖)

) ′
⊙ [Y](𝑖 ,:) = [X′](𝑖 ,:) ⊙ [Y](𝑖 ,:) ; ∀𝑖 = 1, 2, ....𝑁

leading to 

(
diag

(
Xe′1e1Y

) ) ′(
diag

(
Xe′2e2Y

) ) ′
...(

diag
(
Xe′

𝑁
e𝑁Y

) ) ′

=


[X′](1,:) ⊙ [Y](1,:)
[X′](2,:) ⊙ [Y](2,:)

...

[X′](𝑁,:) ⊙ [Y](𝑁,:)


= X′ ⊙ Y.

□

Now recall from Proposition D.2, the Jacobian matirx 𝒯µ𝑣 is given by

𝒯µ𝑣 =

[
diag

(
𝜕𝒯1(µ)
𝜕µ

)
diag

(
𝜕𝒯2(µ)
𝜕µ

)
· · · diag

(
𝜕𝒯𝑁 (µ)
𝜕µ

)] ′
. (E.26)

when we treat κ as a coefficient row vector. For each sector 𝑖 = 1, 2, ...𝑁 ,

𝜕𝒯𝑖(µ)
𝜕µ

=
𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)2
𝜕V(mc𝑖𝑡)

𝜕µ
;

𝜕V(mc𝑖𝑡)
𝜕µ

= 2
[
𝚫µ𝚪𝚺𝑧𝚪′𝚫′

µe′𝑖e𝑖𝚫µA
]
𝑑+ .

We transform (E.26) using Lemma E.1 as

𝒯µ𝑣 =



[
diag

(
𝜕𝒯1(µ)
𝜕µ

)] ′[
diag

(
𝜕𝒯2(µ)
𝜕µ

)] ′
...[

diag
(
𝜕𝒯𝑁 (µ)
𝜕µ

)] ′

= 2 diag ©­«

{
𝜒𝑖

𝜃𝑖𝜆𝑖𝑉
2
𝑖

}𝑁

𝑖=1

ª®¬


(
diag

(
𝚫𝜇Γ𝚺𝑧Γ′∆′

𝜇e′1e1∆𝜇A
)) ′(

diag
(
𝚫𝜇Γ𝚺𝑧Γ′∆′

𝜇e′2e2∆𝜇A
)) ′

...(
diag

(
𝚫𝜇Γ𝚺𝑧Γ′∆′

𝜇e′
𝑁

e𝑁∆𝜇A
)) ′


= 2 diag ©­«

{
𝜒𝑖

𝜃𝑖𝜆𝑖𝑉
2
𝑖

}𝑁

𝑖=1

ª®¬
[(

∆𝜇Γ𝚺𝑧Γ′∆′
𝜇

)
⊙

(
∆𝜇A

) ]
.

(E.27)

where we simplify the notation𝑉𝑖 = V(mc𝑖𝑡). By equation (D.36) and the definition ofϕ = (I − µA)−1µ (−I +ακ),
we obtain a matrix identity

∆𝜇Γ = (I − Aµ)−1(−I +ακ) = µ−1(I − µA)−1µ(−I +ακ) = µ−1ϕ. (E.28)
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Combining the above identities with the definition of covariance matrix of the vector of sectoral marginal cost,

V (mc𝑡) ≡ ΣpΔ
𝑡
= µ−1ϕ𝚺𝑧ϕ

′µ−1 = COV (mc𝑡 ,mc𝑡) (E.29)

and ∆µ = (I − Aµ)−1, (E.27) now simplifies to

𝒯µ𝑣 = 2 diag

({
1 − 𝜇𝑖

V(mc𝑖𝑡)

}𝑁
𝑖=1

) [
COV (mc𝑡 ,mc𝑡) ⊙

(
(I − Aµ)−1A

) ]
, (E.30)

where the first term derives from the fixed-point system (3.6) that 𝜒𝑖

𝜃𝑖𝜆𝑖𝑉𝑖
= 1 − 𝜇𝑖 .

For the solution of 𝒯κ, we follow a similar approach as in Lemma D.4 - D.7, and elaborate on the following
proposition.

Proposition E.1. In the best response function (E.16), the Jacobian matrix 𝒯κ in terms of κ is given by

𝒯κ =

[
𝜕𝒯1(κ)
𝜕κ′

𝜕𝒯2(κ)
𝜕κ′ · · · 𝜕𝒯𝑁 (κ)

𝜕κ′

] ′
. (E.31)

For each sector 𝑖 = 1, 2, ...𝑁 ,

𝜕𝒯𝑖 (κ)
𝜕κ′ =

𝜒𝑖

𝜃𝑖𝜆𝑖𝑉𝑖 (κ)2
𝜕𝑉𝑖 (κ)
𝜕κ′ ;

𝜕𝑉𝑖(κ)
𝜕κ′ = 2𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇α. (E.32)

Proof. Notice that the defferential of Γ = (−I +ακ) is given by

𝑑(Γ) = α𝑑(κ).

Under this circumstance, only κ is the independent variable in function 𝒯𝑖 (κ) and 𝑉𝑖 (κ) with given µ. Therefore,
using Lemma D.4-D.6, we deduce that

𝑑 [𝑉𝑖(κ)] = 𝑑
(
e𝑖∆𝜇Γ𝚺𝑧Γ′∆′

𝜇e′𝑖
)

= tr
[
e𝑖

(
∆𝜇𝑑(Γ)𝚺𝑧Γ′∆′

𝜇 + ∆𝜇ΓΣ𝑧𝑑(Γ′)∆′
𝜇

)
e′𝑖

]
= tr

[
e𝑖∆𝜇𝑑(Γ)𝚺𝑧Γ′∆′

𝜇e′𝑖
]
+ tr

[
e𝑖∆𝜇ΓΣ𝑧𝑑(Γ′)∆′

𝜇e′𝑖
]

= 2 tr
[
e𝑖∆𝜇𝑑(Γ)𝚺𝑧Γ′∆′

𝜇e′𝑖
]

= 2 tr
[
e𝑖∆𝜇α𝑑(κ)𝚺𝑧Γ′∆′

𝜇e′𝑖
]

= 2 tr
[
𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇α𝑑(κ)
]
.

(E.33)

By Lemma D.4,

𝑑 [𝑉𝑖(κ)] = tr
[
𝜕𝑉𝑖(κ)
𝜕κ′ 𝑑κ

]
, (E.34)
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where 𝜕𝑉𝑖(κ)
𝜕κ′ =

[
𝜕𝑉𝑖(κ)
𝜕𝜅1

𝜕𝑉𝑖(κ)
𝜕𝜅2

· · · 𝜕𝑉𝑖(κ)
𝜕𝜅𝑁

] ′
serves as a column vector. The juxtaposition of equations (E.33) and

(E.34) yields

𝜕𝑉𝑖(κ)
𝜕κ′ = 2𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇α; and
𝜕𝑉𝑖(κ)
𝜕κ

= 2α′∆′
𝜇e′𝑖e𝑖∆𝜇Γ𝚺𝑧 .

By definition of 𝒯κ in (E.22),

𝒯κ =

[
𝜕𝒯1(κ)
𝜕κ′

𝜕𝒯2(κ)
𝜕κ′ · · · 𝜕𝒯𝑁 (κ)

𝜕κ′

] ′
. (E.35)

Similar to (D.50), we use the chain rule for matrix derivatives. For each sector 𝑖 = 1, 2, ...𝑁 ,

𝜕𝒯𝑖 (κ)
𝜕κ′ =

𝜒𝑖

𝜃𝑖𝜆𝑖𝑉𝑖 (κ)2
𝜕𝑉𝑖 (κ)
𝜕κ′ ;

𝜕𝑉𝑖(κ)
𝜕κ′ = 2𝚺𝑧Γ′∆′

𝜇e′𝑖e𝑖∆𝜇α, (E.36)

which completes the proof of Proposition E.1. □

Given the above Proposition, we transform equations (E.31) and (E.32) using Lemma E.1 as

𝒯κ =



𝜕𝒯1(κ)
𝜕κ

𝜕𝒯2(κ)
𝜕κ
...

𝜕𝒯𝑁 (κ)
𝜕κ


= diag ©­«

{
𝜒𝑖

𝜃𝑖𝜆𝑖𝑉
2
𝑖

}𝑁

𝑖=1

ª®¬


𝜕𝑉1(κ)
𝜕κ

𝜕𝑉2(κ)
𝜕κ
...

𝜕𝑉𝑁 (κ)
𝜕κ


= 2 diag ©­«

{
𝜒𝑖

𝜃𝑖𝜆𝑖𝑉
2
𝑖

}𝑁

𝑖=1

ª®¬

α′∆′

𝜇e′1e1∆𝜇Γ𝚺𝑧

α′∆′
𝜇e′2e2∆𝜇Γ𝚺𝑧

...

α′∆′
𝜇e′

𝑁
e𝑁∆𝜇Γ𝚺𝑧


= 2 diag ©­«

{
𝜒𝑖

𝜃𝑖𝜆𝑖𝑉
2
𝑖

}𝑁

𝑖=1

ª®¬diag
(
∆𝜇α

)
∆𝜇Γ𝚺𝑧

= 2 diag

({
1 − 𝜇𝑖

𝑉𝑖

}𝑁
𝑖=1

)
diag (ρ)µ−1ϕ𝚺𝑧

= 2 diag

({
1 − 𝜇𝑖

𝑉𝑖

}𝑁
𝑖=1

) [
µ−1ϕE

[
z𝑡z

′
𝑡

]
⊙ (I − Aµ)−1α1′

]
= 2 diag

({
1 − 𝜇𝑖

V (mc𝑖𝑡)

}𝑁
𝑖=1

) [
COV (mc𝑡 , z𝑡) ⊙ (I − Aµ)−1α1′

]

(E.37)

where we define
ρ = (𝜌1 , 𝜌2 , ...𝜌𝑁 )′ = 𝚫µα = (I − Aµ)−1α (E.38)

as in the main text, and implement matrix identity (E.28). The proof of Proposition 4.2 is now complete, according
to (E.25), (E.30), and (E.37).

□
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E.5 Proof of Lemma 4.3

Proof. We trace the direct and indirect impact of monetary policy κ on expected welfare loss 𝐿 ≡ E
[
𝑈𝑡 −𝑈∗

𝑡

]
through the lens of functional relations as 4 layers of composite matrix derivatives,

𝐿 = E
[
𝑈𝑡 −𝑈∗

𝑡

] 𝜕𝐿
𝜕𝑒𝑖𝑡−−→ 𝑒𝑖𝑡

𝜕𝑒𝑖𝑡
𝜕Q−−→ Q

𝜕Q
𝜕µ𝑣

−−−→ µ𝑣
𝐽µ𝑣 (κ)
−−−−→ κ. (E.39)

Step 1: Computing Derivatives of Average Pricing Errors 𝑒𝑖𝑡 .
Recall from the definition of sectoral pricing errors

𝑒𝑖𝑡 = e𝑖Q (L − 1κ) z𝑡 , (E.40)

with matrix Q defined as Q = (I − µA)−1(I − µ).

We start with univariate derivative of a single sector, by chain rule,

𝑑𝑒𝑖𝑡

𝑑𝜅𝑠
=

𝑁∑
𝑟=1

𝑁∑
𝑗=1

𝜕𝑒𝑖𝑡
𝜕𝑄𝑟 𝑗

𝜕𝑄𝑟 𝑗

𝜕𝜅𝑠
+ 𝜕𝑒𝑖𝑡

𝜕𝜅𝑠
= tr

(
𝐽𝑒𝑖𝑡 (Q)′ 𝐽Q (𝜅𝑠)

)
+ 𝜕𝑒𝑖𝑡

𝜕𝜅𝑠
(E.41)

where we define two Jocabian matrices of composite derivatives as

𝐽𝑒𝑖𝑡 (Q) =



𝜕𝑒𝑖𝑡
𝜕𝑄11

𝜕𝑒𝑖𝑡
𝜕𝑄12

· · · 𝜕𝑒𝑖𝑡
𝜕𝑄1𝑁

𝜕𝑒𝑖𝑡
𝜕𝑄21

𝜕𝑒𝑖𝑡
𝜕𝑄22

· · · 𝜕𝑒𝑖𝑡
𝜕𝑄2𝑁

...
...

. . .
...

𝜕𝑒𝑖𝑡
𝜕𝑄𝑁1

𝜕𝑒𝑖𝑡
𝜕𝑄𝑁2

· · · 𝜕𝑒𝑖𝑡
𝜕𝑄𝑁𝑁


; 𝐽Q (𝜅𝑠) =



𝜕𝑄11
𝜕𝜅𝑠

𝜕𝑄12
𝜕𝜅𝑠

· · · 𝜕𝑄1𝑁
𝜕𝜅𝑠

𝜕𝑄21
𝜕𝜅𝑠

𝜕𝑄22
𝜕𝜅𝑠

· · · 𝜕𝑄2𝑁
𝜕𝜅𝑠

...
...

. . .
...

𝜕𝑄𝑁1
𝜕𝜅𝑠

𝜕𝑄𝑁2
𝜕𝜅𝑠

· · · 𝜕𝑄𝑁𝑁

𝜕𝜅𝑠


To solve 𝐽𝑒𝑖𝑡 (Q), we treat κ as a coefficient vector and construct the function of 𝑒𝑖𝑡 (Q) only with respect to the
variable Q. Under such circumstances, the differential of 𝑒𝑖𝑡 (Q) becomes

𝑑 [𝑒𝑖𝑡 (Q)] = 𝑑 (e𝑖Q (L − 1κ) z𝑡)
= tr [e𝑖𝑑 (Q) (L − 1κ) z𝑡]
= tr [(L − 1κ) z𝑡e𝑖𝑑 (Q)] ,

(E.42)

where we apply results from Lemma D.4-D.6. By definition of matrix differential,

𝑑 [𝑒𝑖𝑡 (Q)] = tr
[
𝜕 [𝑒𝑖𝑡 (Q)]

𝜕Q′ 𝑑 (Q)
]
= tr

[
𝐽𝑒𝑖𝑡 (Q)′ 𝑑 (Q)

]
. (E.43)

Since 𝑑 (Q) is a matrix of differentials for variable Q, in order to equalize (E.42) and (E.43), we must have

𝐽𝑒𝑖𝑡 (Q)′ = 𝜕 [𝑒𝑖𝑡 (Q)]
𝜕Q′ = (L − 1κ) z𝑡e𝑖 . (E.44)
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By inspection, the othornomal unit row vector e𝑖 determines that the elements of 𝐽𝑒𝑖𝑡 (Q)′ are 0 except for the 𝑖th
column:

𝐽𝑒𝑖𝑡 (Q)′ =


0 · · · 𝜕𝑒𝑖𝑡

𝜕𝑄𝑖1
· · · 0

0 · · · 𝜕𝑒𝑖𝑡
𝜕𝑄𝑖2

· · · 0
...

...
...

...
...

0 · · · 𝜕𝑒𝑖𝑡
𝜕𝑄𝑖𝑁

· · · 0


;

[
𝐽𝑒𝑖𝑡 (Q)′

]
(:,𝑖) = (L − 1κ) z𝑡 ,

and
[
𝐽𝑒𝑖𝑡 (Q)

]
(𝑖 ,:) = z

′
𝑡 (L − 1κ)′, It follows that (E.41) simplifies to

𝑑𝑒𝑖𝑡

𝑑𝜅𝑠
=

[
𝐽𝑒𝑖𝑡 (Q)

]
(𝑖 ,:)

[
𝐽Q (𝜅𝑠)′

]
(:,𝑖) +

𝜕𝑒𝑖𝑡
𝜕𝜅𝑠

= z′𝑡 (L − 1κ)′
[
𝐽Q (𝜅𝑠)′

]
(:,𝑖) +

𝜕𝑒𝑖𝑡
𝜕𝜅𝑠

, (E.45)

where the first equality follows from definition of trace operator, and[
𝐽Q (𝜅𝑠)′

]
(:,𝑖) =

[
𝜕𝑄𝑖1
𝜕𝜅𝑠

𝜕𝑄𝑖2
𝜕𝜅𝑠

· · · 𝜕𝑄𝑖𝑁

𝜕𝜅𝑠

] ′
.

Using the same matrix calculus techniques from (E.42) - (E.44),

𝜕𝑒𝑖𝑡
𝜕κ

= −z𝑡e𝑖Q1 = −[Q1](𝑖)z𝑡 ;
𝜕𝑒𝑖𝑡
𝜕𝜅𝑠

= −[Q1](𝑖)𝑧𝑠𝑡 ; 𝑖 , 𝑠 = 1, 2, ...𝑁 ,

where [Q1](𝑖) = e𝑖Q1 is scalar. Therefore, the univariate derivative of average pricing errors in (E.45) admits the
form,

𝑑𝑒𝑖𝑡

𝑑𝜅𝑠
= z′𝑡 (L − 1κ)′

[
𝐽Q (𝜅𝑠)′

]
(:,𝑖) − [Q1](𝑖)𝑧𝑠𝑡 . (E.46)

Next, we characterize the key derivative
[
𝐽Q (𝜅𝑠)′

]
(:,𝑖) in (E.41). By definition and chain rule,

[
𝐽Q (𝜅𝑠)′

]
(:,𝑖) =



𝜕𝑄𝑖1
𝜕𝜅𝑠
𝜕𝑄𝑖2
𝜕𝜅𝑠
...

𝜕𝑄𝑖𝑁

𝜕𝜅𝑠


=



𝜕𝑄𝑖1
𝜕(µ𝑣)′
𝜕𝑄𝑖2
𝜕(µ𝑣)′
...

𝜕𝑄𝑖𝑁

𝜕(µ𝑣)′


[
𝐽µ𝑣 (κ)

]
(:,𝑠) . (E.47)

In particular,
𝜕𝑄𝑖 𝑗

𝜕 (µ𝑣)′
=

[
𝜕𝑄𝑖 𝑗

𝜕𝜇1

𝜕𝑄𝑖 𝑗

𝜕𝜇2
· · · 𝜕𝑄𝑖 𝑗

𝜕𝜇𝑁

]
; ∀𝑖 , 𝑗 = 1, 2, . . . ..𝑁 ,

and 𝐽µ𝑣 (κ) =



𝜕𝜇1
𝜕𝜅1

𝜕𝜇1
𝜕𝜅2

· · · 𝜕𝜇1
𝜕𝜅𝑁

𝜕𝜇2
𝜕𝜅1

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇2
𝜕𝜅𝑁

...
...

...
...

𝜕𝜇𝑁

𝜕𝜅1

𝜕𝜇2
𝜕𝜅2

· · · 𝜕𝜇𝑁

𝜕𝜅𝑁


is constructed in (E.23), following the expression in Proposition 4.2.
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To solve for 𝜕𝑄𝑖 𝑗

𝜕(µ𝑣)′ in (E.47), we note that the differential of Q = (I − µA)−1 (I − µ) is given by

𝑑Q = 𝑑 (I − µA)−1 (I − µ) + (I − µA)−1 𝑑 (I − µ)
= − (I − µA)−1 𝑑 (I − µA) (I − µA)−1 (I − µ) + (I − µA)−1 𝑑 (I − µ)
= (I − µA)−1 𝑑µA (I − µA)−1 (I − µ) − (I − µA)−1 𝑑µ

= (I − µA)−1 𝑑µ
[
A (I − µA)−1 (I − µ) − I

]
= (I − µA)−1 𝑑µ (AQ − I) .

(E.48)

For each element of 𝑑Q ∈ R𝑁×𝑁 ,

[𝑑Q](𝑖 , 𝑗) =
𝑁∑
𝑙=1

[
(I − µA)−1]

(𝑖 ,𝑙) [(AQ − I)](𝑙 , 𝑗) 𝑑𝜇𝑙 ; ∀𝑖 , 𝑗 = 1, 2, ....𝑁 ,

where I use the diagonal property of µ. Hence,

𝜕 [Q](𝑖 , 𝑗)
𝜕𝜇𝑙

=
[𝑑Q](𝑖 , 𝑗)

𝑑𝜇𝑙
=

[
(I − µA)−1]

(𝑖 ,𝑙) [(AQ − I)](𝑙 , 𝑗) ; ∀𝑖 , 𝑗 , 𝑙 = 1, 2, ....𝑁.

Stack the above equations in vector form,

𝜕 [Q](𝑖 , 𝑗)
𝜕µ𝑣

=

{[
(I − µA)−1]

(𝑖 ,:)

}′
⊙ [(AQ − I)](:, 𝑗) ; ∀𝑖 , 𝑗 = 1, 2, ....𝑁 ,

which can be transposed to

𝜕 [Q](𝑖 , 𝑗)
𝜕 (µ𝑣)′

=

(
𝜕 [Q](𝑖 , 𝑗)
𝜕µ𝑣

) ′
=

[
(I − µA)−1]

(𝑖 ,:) ⊙
[
(AQ − I)′

]
(𝑗 ,:) ; ∀𝑖 , 𝑗 = 1, 2, ....𝑁 , (E.49)

If we use the following matrix identities,

AQ − I = −µ−1(I − µA)−1µ(I − A) = −(I − Aµ)−1(I − A),

we can stack the vector in (E.49) into matrix form as

𝜕𝑄𝑖1
𝜕(µ𝑣)′
𝜕𝑄𝑖2
𝜕(µ𝑣)′
...

𝜕𝑄𝑖𝑁

𝜕(µ𝑣)′


= (AQ − I)′ diag

( [
(I − µA)−1]

(𝑖 ,:)

)
= −

[
(I − Aµ)−1(I − A)

] ′
diag

( [
(I − µA)−1]

(𝑖 ,:)

)
.
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The first equality follows from the property of Hadamard product. As such, we obtain a representation of (E.47),

[
𝐽Q (𝜅𝑠)′

]
(:,𝑖) = −

[
(I − Aµ)−1(I − A)

] ′
diag

( [
(I − µA)−1]

(𝑖 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) (E.50)

Before we move on to the next step, we express the univariate derivative by substituting (E.50) into (E.46),

𝑑𝑒𝑖𝑡

𝑑𝜅𝑠
=

[
(I − Aµ)−1(I − A) (1κ − L) z𝑡

] ′
diag

( [
(I − µA)−1]

(𝑖 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑖)𝑧𝑠𝑡

= z′𝑡

[
µ−1(I − µA)−1µ(−I +ακ)

] ′
diag

( [
(I − µA)−1]

(𝑖 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑖)𝑧𝑠𝑡

= z′𝑡ϕ
′µ−1 diag

(
[H](𝑖 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑖)𝑧𝑠𝑡 .

(E.51)

where the second equality follows from the matrix identities (D.36) and (1κ − L) = L(−I + ακ), and the last
equality from the definition of ϕ = (I −µA)−1µ(−I +ακ) and H = (I −µA)−1. Equation (E.51) measures the total
marginal impact of wage rule κ on the average pricing errors 𝑒𝑖𝑡 . We now turn to the step 2.

Step 2: Computing Derivatives of Expected Welfare Loss.
The second-order approximation of the expected welfare loss (4.1) can be expressed as

𝐿 = Δ𝑈𝑤𝑖𝑡ℎ𝑖𝑛
𝑡 + Δ𝑈𝑂𝐺

𝑡 + Δ𝑈 𝑎𝑐𝑟𝑜𝑠𝑠
𝑡

=
1
2E


𝑁∑
𝑖=1

𝜒𝑖𝜇𝑖 +
1

(𝛾 + 1/𝜂)
©­«

𝑛∑
𝑗=1

𝛽 𝑗𝑒 𝑗𝑡
ª®¬

2

+
𝑁∑
𝑖=1

𝜆𝑖

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑒
2
𝑗𝑡 −

𝑁∑
𝑖=1

𝜆𝑖
©­«

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑒 𝑗𝑡
ª®¬

2

+
𝑛∑
𝑗=1

𝛽 𝑗𝑒
2
𝑗𝑡 −

©­«
𝑛∑
𝑗=1

𝛽 𝑗𝑒 𝑗𝑡
ª®¬

2
=

1
2E


𝑁∑
𝑖=1

𝜒𝑖𝜇𝑖 +
(

1
(𝛾 + 1/𝜂) − 1

) ©­«
𝑛∑
𝑗=1

𝛽 𝑗𝑒 𝑗𝑡
ª®¬

2

+
𝑁∑
𝑖=1

𝜆𝑖

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑒
2
𝑗𝑡 −

𝑁∑
𝑖=1

𝜆𝑖
©­«

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑒 𝑗𝑡
ª®¬

2

+
𝑛∑
𝑗=1

𝛽 𝑗𝑒
2
𝑗𝑡


(E.52)

with first-order condition with respect to 𝜅𝑠 , 𝑠 = 1, 2, ...𝑁 given by

1
2

𝑁∑
𝑖=1

E
[
𝜒𝑖

𝑑𝜇𝑖

𝑑𝜅𝑠

]
︸            ︷︷            ︸

Term (1)

+
(

1
(𝛾 + 1/𝜂) − 1

) 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝛽𝑖𝛽 𝑗E
[
𝑒𝑖𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
︸                       ︷︷                       ︸

Term (2)

+
𝑁∑
𝑖=1

𝜆𝑖

𝑁∑
𝑗=1

𝑎𝑖 𝑗E
[
𝑒 𝑗𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
︸                         ︷︷                         ︸

Term (3)

−
𝑁∑
𝑖=1

𝜆𝑖

𝑁∑
𝑗=1

𝑁∑
𝑟=1

𝑎𝑖 𝑗 𝑎𝑖𝑟E
[
𝑒𝑟𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
︸                                  ︷︷                                  ︸

Term (4)

+
𝑁∑
𝑗=1

𝛽 𝑗E
[
𝑒 𝑗𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
︸                ︷︷                ︸

Term (5)

= 0

(E.53)

Next, we compute term-by-term the expected derivatives in (E.53) using results we have derived above. In
deriving these matrix expressions, we need several matrix identities involving Hadamard product and diagonal
matrices, summarized in the following lemma.

Lemma E.2. Let X𝑎 and X𝑏 denote two 𝑁-dimensional column vectors, then

X′
𝑎 diag (𝑋𝑏) = X′

𝑎 ⊙ X′
𝑏
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Let X𝐴 and X𝐵 denote two 𝑁 × 𝑁 matrices, with elements of X𝐴 denoted by [X𝐴]𝑖 𝑗 = 𝑥𝐴
𝑖𝑗

. Then

𝑁∑
𝑗=1

𝑥𝐴𝑖𝑗e𝑗X𝐵 = [X𝐴](𝑖 ,:) X𝐵

Combining these two results together with the definition of Hadamard product,

e1X𝐴 diag
(
[X𝐵](1,:)

)
e2X𝐴 diag

(
[X𝐵](2,:)

)
...

e𝑁X𝐴 diag
(
[X𝐵](3,:)

)

=


[X𝐴](1,:) ⊙ [X𝐵](1,:)
[X𝐴](2,:) ⊙ [X𝐵](2,:)

...

[X𝐴](𝑁,:) ⊙ [X𝐵](𝑁,:)


= X𝐴 ⊙ X𝐵

Finally, suppose X𝐶 is a 𝑁 × 𝑁 matrix,

(
[X𝐶](1,:) X𝐴

)
⊙

(
[X𝐶](1,:) X𝐵

)(
[X𝐶](2,:) X𝐴

)
⊙

(
[X𝐶](2,:) X𝐵

)
...(

[X𝐶](𝑁,:) X𝐴

)
⊙

(
[X𝐶](𝑁,:) X𝐵

)

=



(
[X𝐶](1,:) X𝐴

)(
[X𝐶](2,:) X𝐴

)
...(

[X𝐶](𝑁,:) X𝐴

)

⊙



(
[X𝐶](1,:) X𝐵

)(
[X𝐶](2,:) X𝐵

)
...(

[X𝐶](𝑁,:) X𝐵

)

=

(
X𝐶X𝐴

)
⊙

(
X𝐶X𝐵

)

The proof of Lemma E.2 is straightforward and hence omitted. Using this lemma, we carry out the derivation of
(E.53).

Solution of Term (1). The first term of (E.53) follows

Term (1) =
𝑁∑
𝑖=1

E
[
𝜒𝑖

𝑑𝜇𝑖

𝑑𝜅𝑠

]
=

𝑁∑
𝑖=1

𝜒𝑖

𝑑𝜇𝑖

𝑑𝜅𝑠
= χ′ 𝑑µ

𝑣

𝑑𝜅𝑠
= χ′ [𝐽µ𝑣 (κ)

]
(:,𝑠) (E.54)

where 𝐽µ𝑣 (κ) is given in the proof of Proposition 4.2.

Solution of Term (2). To begin with, we notice that a matrix identity holds as

Q (L − 1κ) = −QL(−I +ακ) = (I − µA)−1 [µ(I − A) − (I − µA)]Lµ−1(I − µA)ϕ =
[
I − L(µ−1 − A)

]
ϕ = L(I − µ−1)ϕ

(E.55)

where I use the matrix identity Lα = 1, and adopt the definition of ϕ = (I − µA)−1µ(−I +ακ) and
Q = (I − µA)−1(I − µ). With equation (E.55) and the definition of V (mc𝑡) = µ−1ϕ𝚺𝑧ϕ

′µ−1 in (E.29), we obtain

Q (L − 1κ)𝚺𝑧ϕ
′µ−1 = L(µ − I)V (mc𝑡) . (E.56)
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Next, we use equations (E.40) and (E.51) to derive

E
[
𝑒𝑖𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
= E

{
e𝑖Q (L − 1κ) z𝑡

[
z′𝑡ϕ

′µ−1 diag
(
[H](𝑗 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑗)𝑧𝑠𝑡

] }
= e𝑖Q (L − 1κ)𝚺𝑧ϕ

′µ−1 diag
(
[H](𝑗 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑗)e𝑖Q (L − 1κ) [𝚺𝑧](:,𝑠)

= e𝑖L(µ − I)ΣpΔ
𝑡

diag
(
[H](𝑗 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑗)e𝑖Q (L − 1κ) [𝚺𝑧](:,𝑠) ,

where the second identity follows from the definition that E
[
z𝑡z

′
𝑡

]
= 𝚺𝑧 and E [z𝑡𝑧𝑠] = [𝚺𝑧](:,𝑠), and the last

identity follows the matrix identity of (E.56).

The second term of (E.53) now follows

Term (2) =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝛽𝑖𝛽 𝑗E
[
𝑒𝑖𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝛽𝑖𝛽 𝑗

[
e𝑖L(µ − I)V (mc𝑡)diag

(
[H](𝑗 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑗)e𝑖Q (L − 1κ) [𝚺𝑧](:,𝑠)

]
=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

(
𝛽𝑖e𝑖L(µ − I)V (mc𝑡)

) [
𝛽 𝑗 diag

(
[H](𝑗 ,:)

)] [
𝐽µ𝑣 (κ)

]
(:,𝑠) −

𝑁∑
𝑗=1

𝛽 𝑗[Q1](𝑗)
𝑁∑
𝑖=1

𝛽𝑖e𝑖Q (L − 1κ) [𝚺𝑧](:,𝑠)

= [(β′L (µ − I)V (mc𝑡)) ⊙ (β′H)]
[
𝐽µ𝑣 (κ)

]
(:,𝑠) − (β′Q1)β′Q (L − 1κ) [𝚺𝑧](:,𝑠)

= r𝛽′
[
𝐽µ𝑣 (κ)

]
(:,𝑠) − (β′Q1)β′Q (L − 1κ) [𝚺𝑧](:,𝑠) ,

(E.57)

where we exploit the property of Hadamard product in Lemma E.2 and define

r𝛽′ = [(β′L (µ − I)V (mc𝑡)) ⊙ (β′H)] (E.58)

where H = (I − µA)−1.

Solution of Term (3). The third term in (E.53) follows

Term (3) =
𝑁∑
𝑖=1

𝜆𝑖

𝑁∑
𝑗=1

𝑎𝑖 𝑗E
[
𝑒 𝑗𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
=

𝑁∑
𝑖=1

𝜆𝑖

𝑁∑
𝑗=1

𝑎𝑖 𝑗

[
e𝑗L(µ − I)ΣpΔ

𝑡
diag

(
[H](𝑗 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑗)e𝑗Q (L − 1κ) [𝚺𝑧](:,𝑠)

]
=

𝑁∑
𝑖=1

𝜆𝑖

[
[A](𝑖 ,:)

[(
L (µ − I)ΣpΔ

𝑡

)
⊙ H

] [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [A](𝑖 ,:) diag (Q1)Q (L − 1κ) [𝚺𝑧](:,𝑠)

]
= λ′ARI [

𝐽µ𝑣 (κ)
]
(:,𝑠) − λ

′A diag (Q1)Q (L − 1κ) [𝚺𝑧](:,𝑠)

(E.59)
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where we define R𝐼 = [(L (µ − I)V (mc𝑡)) ⊙ H].

Solution of Term (4). Similarly, the fourth term of (E.53) follows

Term (4) =
𝑁∑
𝑖=1

𝜆𝑖

𝑁∑
𝑗=1

𝑁∑
𝑟=1

𝑎𝑖 𝑗𝑎𝑖𝑟E
[
𝑒𝑟𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
= 𝜎2

𝑠

𝑁∑
𝑖=1

𝜆𝑖

𝑁∑
𝑗=1

𝑁∑
𝑟=1

𝑎𝑖 𝑗𝑎𝑖𝑟

[
e𝑟L(µ − I)V (mc𝑡)diag

(
[H](𝑗 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑗)e𝑟Q (L − 1κ) [𝚺𝑧](:,𝑠)

]
=

𝑁∑
𝑖=1

𝜆𝑖

{ 𝑁∑
𝑟=1

𝑁∑
𝑗=1

(𝑎𝑖𝑟 𝑒𝑟L(µ − I)V (mc𝑡))
[
𝑎𝑖 𝑗 diag

(
[H](𝑗 ,:)

)] [
𝐽µ𝑣 (κ)

]
(:,𝑠) −

𝑁∑
𝑗=1

𝑎𝑖 𝑗 [Q1](𝑗)
𝑁∑
𝑟=1

𝑎𝑖𝑟 𝑒𝑟Q (L − 1κ) [𝚺𝑧](:,𝑠)
}

=

𝑁∑
𝑖=1

𝜆𝑖

{ [(
[A](𝑖 ,:) L(µ − I)V (mc𝑡)

)
⊙

(
[A](𝑖 ,:) H

)] [
𝐽µ𝑣 (κ)

]
(:,𝑠) −

(
[A](𝑖 ,:) Q1

) (
[A](𝑖 ,:) Q

)
(L − 1κ) [𝚺𝑧](:,𝑠)

}
= λ′ [(AL(µ − I)V (mc𝑡)) ⊙ (AH)]

[
𝐽µ𝑣 (κ)

]
(:,𝑠) − λ

′ diag (AQ1)AQ (L − 1κ) [𝚺𝑧](:,𝑠)
= λ′RA [

𝐽µ𝑣 (κ)
]
(:,𝑠) − λ

′ diag (AQ1)AQ (L − 1κ) [𝚺𝑧](:,𝑠)
(E.60)

where we define R𝐴 = [(AL (µ − I)V (mc𝑡)) ⊙ (AH)].

Solution of Term (5). Finally, the fifth term of (E.53) follows

Term (5) =
𝑁∑
𝑗=1

𝛽 𝑗E
[
𝑒 𝑗𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
=

𝑁∑
𝑗=1

𝛽 𝑗

[
e𝑗L(µ − I)V (mc𝑡)diag

(
[H](𝑗 ,:)

) [
𝐽µ𝑣 (κ)

]
(:,𝑠) − [Q1](𝑗)e𝑗Q (L − 1κ) [𝚺𝑧](:,𝑠)

]
= β′ [(L (µ − I)V (mc𝑡)) ⊙ H]

[
𝐽µ𝑣 (κ)

]
(:,𝑠) − β

′ diag (Q1)Q (L − 1κ) [𝚺𝑧](:,𝑠)
= β′RI [

𝐽µ𝑣 (κ)
]
(:,𝑠) − β

′ diag (Q1)Q (L − 1κ) [𝚺𝑧](:,𝑠)

(E.61)

To summarize, we have obtained the derivative expressions of the five terms in the first-order condition (E.53):
(E.54), (E.57), (E.59), (E.60) and (E.61). We collect these five expressions according to the three welfare terms
expressed in (E.52), and arrange them in row for all 𝜅𝑠 , 𝑠 = 1, 2, ....𝑁 . The functional relations between attention
and welfare loss is characterized in (E.39) . Therefore, using (E.51) and (E.53), it is straightforward to show that
the welfare exposure to sectoral attention change is

𝜕𝐿

𝜕 (µ𝑣)′
= r𝑜 + r𝑐 + r𝑑 .
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In particular, the three row vectors are all associated with the Jocabian matrix 𝐽µ𝑣 (κ),

r𝑜 =
1

𝛾 + 1/𝜂 r𝛽′ = 1
𝛾 + 1/𝜂 [(β′M] ⊙ (β′H)] , (E.62)

r𝑐 = λ′RI − λ′RA − r𝑜 = λ′ [M ⊙ H] − λ′ [(AM) ⊙ (AH)] − r𝑜 , (E.63)

r𝑑 =
1
2χ

′. (E.64)

where M = L(µ − I)V (mc𝑡) and H = (I − µA)−1. Note that we have combined (E.59) and (E.61) as

λ′ARI + β′RI = λ′RI

and λ′A = λ′ − β′. The proof is now complete.

□

E.6 Proof of Proposition 4.3

Proof. We assume that an interior optimal monetary policy exists such that 0 << µ𝑣 << 1. We proceed with the
proof in three steps.

Step 1: FOC of Optimal Wage Rule as Matrix Fixed-Point.
In contrast to exogenous-information models, the vector-valued FOC equation (4.2) for κ alone cannot pin down
the optimal monetary policy. To see this point, we note that Definition 4 suggests the optimal policy relies
on sectoral attentions µ, but such choice of optimal policy in turn determines the equilibrium distributions of
attentions via (E.7). Motivated by this observation, we characterize the solution of optimal policy in our RI
equilibrium as a joint fixed-point between policy and attention.

Proposition E.2. If an interior optimal monetary policy exists such that 0 << µ𝑣 << 1, it admits the following character-
ization:
(i) Conditional on equilibrium sectoral attention allocation µ and the covariance matrix of the equilibrium marginal costs
V (mc𝑡), the optimal monetary policy (wage) rule κ is determined by the fixed-point equation:

κ =
𝚽 (κ)
𝚽 (κ)α . (E.65)

The 1 × 𝑁 vector 𝚽 (κ) is given by

𝚽 =

{ (
1

(𝛾 + 1/𝜂) − 1
) (
β𝑇Q1

)
β𝑇 + λ𝑇

(
diag (Q1) − diag (AQ1)A

)}
QL +

{
r𝑜 + r𝑐 + r𝑑

}
ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
(I − Q)L

(E.66)

where we define ℛ ≡
[
𝐼 − 𝒯µ𝑣

]−1, which measures the general equilibrium feedback due to strategic complementarity in
information acquisition.
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(ii). Conditional on optimal policy rule κ determined by (E.65), the equilibrium attention µ and the covariance structure of
marginal costs, V (mc𝑡), are endogenously determined via the fixed-point system (E.7), which implicitly define the mapping
from optimal κ to µ as

µ = 𝒢 (κ)

Therefore, the optimal wage rule κ and the endogenous degree of nominal rigidities µ are determined jointly by fixed-point
system (E.7) and (E.65).

Proof. Using expressions in (E.54), (E.57), (E.59), (E.60) and (E.61), combining terms, and empolying the matrix
identity λ′𝐴 = λ′ − β′ from (D.5), the FOC (E.53) now becomes{

1
2χ

′ +
(

1
(𝛾 + 1/𝜂) − 1

)
r𝛽

′ + λ′ (RI − RA) } [
𝐽µ𝑣 (κ)

]
(:,𝑠) +{

−
(

1
(𝛾 + 1/𝜂) − 1

)
(β′Q1)β′ − λ′

(
diag (Q1) − diag (AQ1)A

)}
Q (L − 1κ) [𝚺𝑧](:,𝑠) = 0

(E.67)

Note that the FOC holds for all sectors 𝑠 = 1, 2, ...𝑁 , thus we can arrange equation (E.67) in a row vector for each
sector 𝑠, and employ the notation in Lemma 4.3:{

r𝑜 + r𝑐 + r𝑑
}
𝐽µ𝑣 (κ) +

{
−

(
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ − λ′

(
diag (Q1) − diag (AQ1)A

)}
Q (L − 1κ)𝚺𝑧 = 0′

(E.68)

Now recall 𝐽µ𝑣 (κ) from Proposition 4.2,

𝐽µ𝑣 (κ) =
[
I − 𝒯µ𝑣

]−1 𝒯κ = ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
ϕΣz. (E.69)

Since Q = (I − µA)−1 (I − µ), we obtain

ϕ = (I − µA)−1µ(−I +ακ) = (I − µA)−1 ((I − µA) − (I − µ))L(−I +ακ) = (I − Q)L(−I +ακ). (E.70)

(E.70) serves as an important alternative representation of the pricing function. Using (E.69) and (E.70), equation
(E.68) then simplifies to[{

r𝑜 + r𝑐 + r𝑑
}
ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
(I − Q) +

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
Q

]
L(−I +ακ)𝚺𝑧 = 0′,

(E.71)

where we apply matrix identities Lα = 1 and (L − 1κ) = L (I −ακ).
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Note that in (E.71), 𝚺𝑧 is invertible with diagonal terms 𝜎2
𝑖
> 0, ∀𝑖 = 1, 2, ....𝑁 , thus we must have[{

r𝑜 + r𝑐 + r𝑑
}
ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
(I − Q) +

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
Q

]
L︸                                                                                                                                                              ︷︷                                                                                                                                                              ︸

≡𝚽

(−I +ακ) = 0′,

(E.72)

where we define

𝚽 =

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
QL +

{
r𝑜 + r𝑐 + r𝑑

}
ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
(I − Q)L

Therefore, write the above FOC as
𝚽 −𝚽ακ = 0′

Therefore, the optimal monetary policy rule is given by the fixed-point

κ =
𝚽 (κ)
𝚽 (κ)α (E.73)

as desired. □

Step 2: Transformation to Price-Stabilization
We begin the proof of the second step by a lemma, which provides necessary and sufficient conditions on the
existence of price-stabilization policy.

Lemma E.3. The monetary policy rule under Proposition 3.6, which is supported by a nominal wage rule 𝑤𝑡 =
∑𝑁

𝑖=1 𝜅𝑖𝑧𝑖𝑡 ,
can be implemented by a price-stabilization policy of the form

𝑁∑
𝑖=1

𝜑𝑖𝑝𝑖𝑡 = 0; φ =
(
𝜑1 , . . . , 𝜑𝑁

)
∈ R𝑁 ,

if and only if row vector κ satisfies κα = 1.

Proof. Note the existence of price stabilization is equivalent to a linear matrix equation,

φϕ = 0

which holds for all realizations of shocks z𝑡 . Simple linear algebra then implies such stabilization exists if and
only if the row and columns of ϕ are linear dependent (ϕ is non-invertible). By Proposition 3.4,

ϕ = (I − µA)−1µ (−I +ακ)
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is non-invertible in the interior solution of µ if and only if

det (−I +ακ) = 0. (E.74)

Now apply the matrix determinant lemma,

det (−I +ακ) = (1 − κα)det(−I) = −(1 − κα).

Therefore, a price-stabilization policy exists if and only if κα = 1, as desired. □

Obviously, the optimal montery policy rule in equation (E.65) and (E.73) satisfies the condition κα = 1, thus the
optimal monetary policy can be achieved through a price stabilization policy. By equations (E.55) and (E.70), we
notice that two matrix identities hold:

ϕ = (I − Q)L(−I +ακ); Q (1κ − L) = L
(
µ−1 − I

)
ϕ,

where we use the relation (I − A)1 = α. Using these two identities in (E.72), we obtain[{
r𝑜 + r𝑐 + r𝑑

}
ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
+

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
L

(
µ−1 − I

) ]
ϕ = 0′

(E.75)

Therefore, in the spirit of Lemma E.3, the price-stabilization weight is given by

φ =

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
L(µ−1 − I) +

{
r𝑜 + r𝑐 + r𝑑

}
ℛ diag

({
2𝜌𝑖

𝑉𝑖

}𝑁
𝑖=1

)
(µ−1 − I).

Recall from Proposition E.2 that we define the matrix of general equilibrium propagation (feedbacks) in attentions
as

ℛ ≡
[
𝐼 − 𝒯µ𝑣

]−1
.

Next, we decompose the price-stabilization policy vector φ into two components: φ𝑒 = (𝜑𝑒
1 , 𝜑

𝑒
2 , ...𝜑

𝑒
𝑁
) represents

policy response due to endogenous changes in attention (price flexibilities), and φ𝑥 = (𝜑𝑥
1 , 𝜑

𝑥
2 , ...𝜑

𝑥
𝑁
) represents

policy response holding the nominal rigidities constant; that is

φ = φ𝑒 +φ𝑥

The two components then follows

φ𝑒 =

{
r𝑜 + r𝑐 + r𝑑

}
ℛ diag

({
2𝜌𝑖

𝑉𝑖

}𝑁
𝑖=1

)
(µ−1 − I); (E.76)
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φ𝑥 =

{ (
1

(𝛾 + 1/𝜂) − 1
)
(β′Q1)β′ + λ′

(
diag (Q1) − diag (AQ1)A

)}
L(µ−1 − I). (E.77)

Step 3: Algebraic Details to Scalar Representation (4.4) and (4.13)
First, we write the endogenous components (E.76) in scalar form as

𝜑𝑒
𝑖 = 2 ©­«

𝑁∑
𝑗=1

[
𝑟𝑜𝑗 + 𝑟𝑐𝑗 + 𝑟𝑑𝑗

]
𝑟 𝑗𝑖

ª®¬
(

1
𝜇𝑖

− 1
)

𝜌𝑖

V (mc𝑖𝑡)
, (E.78)

where 𝑟𝑜
𝑗
, 𝑟𝑐

𝑗
, 𝑟𝑑

𝑗
, and 𝑟 𝑗𝑖 are elements of r𝑜 , r𝑐 , r𝑑, and ℛ, respectively. Note that if we employ the notation in

(E.62) and (E.67), we can express the weight in more details,

𝜑𝑒
𝑖 = 2 ©­«

𝑁∑
𝑗=1

[
1
2𝜒𝑗 +

1
(𝛾 + 1/𝜂) 𝑟

𝛽′

𝑗
+

𝑁∑
𝑘=1

𝜆𝑘

(
𝑟 𝐼
𝑘 𝑗
− 𝑟𝐴

𝑘𝑗

)
− 𝑟

𝛽′

𝑗

]
𝑟 𝑗𝑖

ª®¬
(

1
𝜇𝑖

− 1
)

𝜌𝑖

V (mc𝑖𝑡)

where 𝑟 𝑗𝑖 , 𝑟 𝐼𝑘 𝑗 , 𝑟
𝐴
𝑘𝑗

and 𝑟
𝛽′

𝑗
are elements of ℛ, RI, RA and r𝛽′, respectively.

Next, we work on the exogenous component (E.77). By definition, ρ = (I − Aµ)−1α and Q = (I − µA)−1(I − µ).
Consequently,

Q1 = (I − µA)−1(I − µ)Lα =
(
I − (I − µA)−1µ(I − A)

)
Lα =

(
L − µ(I − Aµ)−1) α = 1 − µρ (E.79)

where I use the matrix identities Lα = 1 and (D.36). We define 𝜌0 = β′µρ, which implies that β′Q1 = 1 − 𝜌0 as∑𝑁
𝑖=1 𝛽𝑖 = 1.

Therefore, the component of the policy response holding the nominal rigidities constant can be further simplified
as

φ𝑥 = λ′
{ (

1
(𝛾 + 1/𝜂) − 1

) (
1 − 𝜌0

)
I +

(
I − µdiag (ρ) − diag (A1 − Aµρ)A

)
L

}
(µ−1 − I),

where I use β′L = λ′ from (D.5). Next, we derive a matrix identity

Aµρ = (I − (I − Aµ)) (I − Aµ)−1α = (I − Aµ)−1α −α = ρ − (I − A)1

where α = (I − A)1. We then obtain(
I − µdiag (ρ) − diag (A1 − Aµρ)A

)
L =

(
I − µdiag (ρ) − A + diag (ρ)A

)
L

=

(
(I − A) + (I − µ)diag (ρ) − diag (ρ) (I − A)

)
L

= I + (I − µ)diag (ρ)L − diag (ρ)
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Consequently, the component of the policy response holding the nominal rigidities constant simplifies to

φ𝑥 = λ′
{ ( (

1 − 𝜌0
)

(𝛾 + 1/𝜂) + 𝜌0

)
I + (I − µ)diag (ρ)L − diag (ρ)

}
(µ−1 − I) (E.80)

It follows the exogenous component of weight in scalar form is given by

𝜑𝑥
𝑖 =

[ (
1 − 𝜌0

)
(𝛾 + 1/𝜂)𝜆𝑖 +

𝑁∑
𝑗=1

(
1 − 𝜇𝑖

)
𝜆 𝑗𝜌 𝑗 𝑙 𝑗𝑖 +

(
𝜌0 − 𝜌𝑖

)
𝜆𝑖

] (
1
𝜇𝑖

− 1
)

(E.81)

Finally, we modify the formula (E.78) and (E.81) by adding and subtracting the exogenous component associated
with the within-sector price dispersion under the exogenous-information (fixed-capacity) model, that is, the last
component in (4.4): 𝜇𝑖𝜆𝑖𝜃𝑖𝜌𝑖

(
1
𝜇𝑖

− 1
)
. In this case, the exogenous component exactly align with its counterpart

under exogenous-information:

𝜑𝑥
𝑖 =

[ (
1 − 𝜌0

)
(𝛾 + 1/𝜂)𝜆𝑖 +

𝑁∑
𝑗=1

(
1 − 𝜇𝑖

)
𝜆 𝑗𝜌 𝑗 𝑙 𝑗𝑖 +

(
𝜌0 − 𝜌𝑖

)
𝜆𝑖 + 𝜇𝑖𝜆𝑖𝜃𝑖𝜌𝑖

] (
1
𝜇𝑖

− 1
)

(E.82)

Now (E.82) and (4.4) coincide. The modified endogenous component then follows,

𝜑𝑒
𝑖 = 2 ©­«

𝑁∑
𝑗=1

[
𝑟𝑜𝑗 + 𝑟𝑐𝑗 + 𝑟𝑑𝑗

]
𝑟 𝑗𝑖

ª®¬
(

1
𝜇𝑖

− 1
)

𝜌𝑖

V (mc𝑖𝑡)
− 𝜇𝑖𝜆𝑖𝜃𝑖𝜌𝑖

(
1
𝜇𝑖

− 1
)

=

{
2 ©­«

𝑁∑
𝑗=1

[
𝑟𝑜𝑗 + 𝑟𝑐𝑗 + 𝑟𝑑𝑗

]
𝑟 𝑗𝑖

ª®¬ − 𝜇𝑖𝜆𝑖𝜃𝑖V (mc𝑖𝑡)
} (

1
𝜇𝑖

− 1
)

𝜌𝑖

V (mc𝑖𝑡)

=

{
2 ©­«

𝑁∑
𝑗=1

[
𝑟𝑜𝑗 + 𝑟𝑐𝑗 + 𝑟𝑑𝑗

]
𝑟 𝑗𝑖

ª®¬ − (𝜆𝑖𝜃𝑖V (mc𝑖𝑡) − 𝜒𝑖)
}
𝜌𝑖

𝜇𝑖

1 − 𝜇𝑖

V (mc𝑖𝑡)

where the last equality follows from the equilibrium fixed-point (3.6). Hence, we write the endogenous policy
weight as

𝜑𝑒
𝑖 =

{
2 ©­«

𝑁∑
𝑗=1

[
𝑟𝑜𝑗 + 𝑟𝑐𝑗 + 𝑟𝑑𝑗

]
𝑟 𝑗𝑖

ª®¬ − (𝜆𝑖𝜃𝑖V (mc𝑖𝑡) − 𝜒𝑖)
}
𝜌𝑖

𝜇𝑖

1 − 𝜇𝑖

V (mc𝑖𝑡)
(E.83)

as desired. The proof is now complete. □

E.7 Proof of Proposition 4.4

Proof. Recall that the output-gap volatility in terms of cross-sectional average pricing errors is given by (E.2). We
first state the optimal output-gap volatility optimization problem in the following definition.
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Definition 5. The central bank designs optimal OG policy by solving the following constrained optimization problem

min
{µ𝑣 ,κ}

V
(
𝑐𝑡 − 𝑐∗𝑡

)
= E

 1
(𝛾 + 1/𝜂)2

©­«
𝑛∑
𝑗=1

𝛽 𝑗𝑒 𝑗𝑡
ª®¬

2
subject to the equilibrium fixed-point for each sector 𝑖 = 1, 2...𝑁 ,

𝜇𝑖 = max
{
0, 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖V(mc𝑖𝑡)

}
; V(mc𝑖𝑡) =




e𝑖

[
(I − Aµ)−1 (−I +ακ)

]
𝚺1/2
𝑧




2
.

In order to obtain the optimal OG policy, we need to solve the first-order condition of the expected output-gap
volatility on the monetary policy rule,

𝑑E [Σ𝑡]
𝑑𝜅𝑠

=
1

(𝛾 + 1/𝜂)2
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝛽𝑖𝛽 𝑗E
[
𝑒𝑖𝑡

𝑑𝑒 𝑗𝑡

𝑑𝜅𝑠

]
= 0;⇔ r𝛽′

[
𝐽µ𝑣 (κ)

]
(:,𝑠) − (β′Q1)β′Q (L − 1κ) [𝚺𝑧](:,𝑠) = 0

where the second identity follows from (E.57), and r𝛽′ = [(β′L (µ − I)V(mc𝑖𝑡)) ⊙ (β′H)]. Applying the same
methods we employed to derive (E.72), the above FOC condition can be simplified to[

r𝛽′ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
(I − Q) + (β′Q1)β′Q

]
L(−I +ακ)𝚺𝑧 = 0′. (E.84)

Therefore, the optimal OG policy rule is given by the fixed-point

κ𝑂𝐺 =
𝚽𝑂𝐺

𝚽𝑂𝐺α

where we define

𝚽𝑂𝐺 = r𝛽′ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
(I − Q)L + (β′Q1)β′QL

Next, recall from Lemma E.3, the optimal OG policy can be implemented through a price-stabilization policy as

φ𝑂𝐺 =

[
r𝛽′ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
(I − Q)L + (β′Q1)β′QL

]
µ−1(I − µA)

= r𝛽′ℛ diag

({
2(1 − 𝜇𝑖)𝜌𝑖

𝜇𝑖𝑉𝑖

}𝑁
𝑖=1

)
︸                               ︷︷                               ︸

φ𝑒 ,𝑂𝐺

+
(
1 − 𝜌0

)
λ′ (µ−1 − I

)︸                    ︷︷                    ︸
φ𝑥,𝑂𝐺

(E.85)
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where the last identity follows from matrix identities45 QL = L
(
µ−1 − I

)
(I − µA)−1µ, (I − Q)L = (I − µA)−1µ,

β′Q1 = 1 − 𝜌0, and β′L = λ′. Equation (E.85) shows the price-stabilization policy can be splited into two
components under the OG optimization problem, which is similar to our approach in Proposition 4.3. The next
proposition characterizes a condition under which the optimal OG policy satisfies φ𝑒 ,𝑂𝐺 ≡ 0 .

Proposition E.3. If the interior optimal OG policy completely stabilizes output-gap volatility (V
(
𝑐𝑡 − 𝑐∗𝑡

)
= 0), at the

optimum the price-stabilization policy in (E.85) does not respond to endogenous changes in attention (price flexibilities); that
is, φ𝑒 ,𝑂𝐺 ≡ 0.

Proof. In matrix form, the expected output-gap volatility can be expressed as

V
(
𝑐𝑡 − 𝑐∗𝑡

)
=

1
(𝛾 + 1/𝜂)2β

′Σ𝑒β =




β′Q (L − 1κ)𝚺1/2
𝑧




2
≥ 0

where 𝚺𝑒 = Q (L − 1κ)𝚺𝑧 (L − 1κ)′ Q′ is defined as the covariance matrix of the cross-sectional average of
sectoral pricing errors. Under the interior optimal OG policy, if the output-gap volatility vanishes, then(
β′Q (L − 1κ)𝚺1/2

𝑧

)
= 0′. Then at the optimum, since 𝚺1/2

𝑧 ≻ 0 is invertible,

r𝛽′ = [(β′L (µ − I)V(mc𝑖𝑡)) ⊙ (β′H)] =
[((
β′Q (L − 1κ)𝚺1/2

𝑧

)
𝚺1/2
𝑧 ϕ′µ−1

)
⊙ (β′H)

]
≡ 0

by matrix identity (E.56). Therefore, by (E.84) the optimal OG policy rule reduces to

κ𝑂𝐺 =
β′QL
β′Q1

As a result, φ𝑒 ,𝑂𝐺 ≡ 0 and the endogenous part of the price-stabilizaiton condition in (E.85) vanishes. □

Given the above property of the optimal OG policy, the price-stabilization now simplifies to

φ𝑂𝐺 = φ𝑥,𝑂𝐺 =
(
1 − 𝜌0

)
λ′ (µ−1 − I

)
; φ𝑒 ,𝑂𝐺 ≡ 0,

which can be expressed as scalar form,

𝜑𝑖 = 𝜑𝑥,𝑂𝐺
𝑖

=

(
1 − 𝜌0

)
(𝛾 + 1/𝜂)𝜆𝑖

(
1
𝜇𝑖

− 1
)

; 𝜑𝑒 ,𝑂𝐺
𝑖

≡ 0; 𝑖 = 1, 2, ...𝑁.

The proof is now complete. □

45Specifically, we notice that by (E.55) QL = L(µ−1 − I)(I − µA)−1µ. Combining this equation with (D.36) yields

(I − Q)L = L − L(µ−1 − I)(I − µA)−1µ = L
(
µ−1(I − µA) − (µ−1 − I)

)
(I − µA)−1µ = (I − µA)−1µ.

The matrix identities β′Q1 = 1 − 𝜌0 follows from (E.79) and β′L = λ′ from (D.5).
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E.8 Proof of Proposition 4.5

Proof. Under rational inattention, when only minimizing welfare loss associated with the within-sector price
dispersion. The objective function is simply

𝐿𝑤𝑖𝑡ℎ𝑖𝑛 =
1
2χ

′µ𝑣

Therefore, optimal monetary policy only operate through the endogenous-attention channel. The mathematics
is identical to our previous derivations, and the optimal policy weight is simply

𝜑𝑤𝑖𝑡ℎ𝑖𝑛
𝑖 =

©­«
𝑁∑
𝑗=1

𝜒𝑗ℛ𝑗𝑖
ª®¬

𝜌𝑖

V(mc𝑖𝑡)

(
1
𝜇𝑖

− 1
)
. (E.86)

The proof is complete.

□
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F. Additional Theory and Policy Results

F.1 Equivalence between Attention and Signal Precision (Sectoral Nominal Rigidity)

In this subsection, we establish equivalence between signal precision of sector 𝑖, 𝜇𝑖 , and the total attention capacity
chosen by sector 𝑖. Let 𝛿∗

𝑖
be the endogenous amount of information capacity chosen by firms, measured in terms

of nats. By definition,

𝛿∗𝑖 =
1
2 log det Σ𝑧 −

1
2 log det Σ𝑧|𝑥𝑖

The following proposition establishes a monotone, one-to-one mapping between 𝛿∗
𝑖
and 𝜇𝑖 .

Proposition F.1. The endogenous attention (total entropy reduction) 𝛿∗
𝑖

chosen by firms in sector 𝑖 is monotonically
increasing with 𝜇𝑖 and is given by:

𝛿∗𝑖 = −1
2 log

(
1 − 𝜇𝑖

)
.

Proof. Using our previous result (D.25) and partition U𝑖 =
[
ζ 𝑖1 ζ

𝑖
2
]

where eigenvector ζ 𝑖1 corresponds to 𝑑𝑖1 defined
in Appendix D.3,

Σ𝑧|𝑥𝑖 = Σ
1
2
𝑧

[
ζ 𝑖1 ζ

𝑖
2
] 

𝜒𝑖

2𝑑𝑖1
0

0 I𝑁−1


[
ζ 𝑖1 ζ

𝑖
2
] ′ Σ

1
2
𝑧

= Σ
1
2
𝑧

[
ζ 𝑖1ζ

𝑖 ,𝑇
1 + ζ 𝑖2ζ

𝑖 ,𝑇
2 −

(
1 − 𝜒𝑖

2𝑑𝑖1

)
ζ 𝑖1ζ

𝑖 ,𝑇
1

]
Σ

1
2
𝑧

= Σ
1
2
𝑧

[
I −

(
1 − 𝜒𝑖

2𝑑𝑖1

)
Σ

1
2
𝑧𝛀𝑖𝑧Σ

1
2
𝑧

𝑑𝑖1

]
Σ

1
2
𝑧

= Σ𝑧 −
[ (2𝑑𝑖1 − 𝜒𝑖

)
2(𝑑𝑖1)2

] (
Σ𝑧𝛀𝑖𝑧Σ𝑧

)
= Σ𝑧 −

𝜒𝑖

2𝑅𝑖𝑑
𝑖
1𝜈

2
𝑖

(
Σ𝑧𝛀𝑖𝑧Σ𝑧

)
where we use the definition of unitary matrix ζ 𝑖1𝜁

𝑖
1)′ + ζ 𝑖2(ζ 𝑖2)′ = U𝑖U′

𝑖
= I and the derivation of endogenous noise

variance in Appendix D.3. Next, we compute the ratio of determinants of prior and posterior covariances,

det Σ𝑧|𝑥𝑖
det Σ𝑧

= det Σ𝑧|𝑥𝑖Σ
−1
𝑧 = det

(
I − 𝜒𝑖

2𝑅𝑖𝑑
𝑖
1𝜈

2
𝑖

Σ𝑧𝛀𝑖𝑧

)
= det

(
I − 𝜒𝑖

2𝑅𝑖𝑑
𝑖
1𝜈

2
𝑖

𝚺𝑧G′
𝑖G𝑖

)
,

since Σ𝑧G′
𝑖
is a 𝑁 ×1 vector while G𝑖 is a 1×𝑁 vector, we employ the matrix determinant lemma for outer product

A-74



Σ𝑧G′
𝑖
G𝑖 ,

det

(
I − 𝜒𝑖

2𝑅𝑖𝑑
𝑖
1𝜈

2
𝑖

Σ𝑧G′
𝑖G𝑖

)
= 1 − 𝜒𝑖

2𝑅𝑖𝑑
𝑖
1𝜈

2
𝑖

G𝑖Σ𝑧G′
𝑖 = 1 − 𝜒𝑖

2𝑑𝑖1𝜈
2
𝑖

V (mc𝑖𝑡) = 1 − V (mc𝑖𝑡)
V (mc𝑖𝑡) + 𝜈2

𝑖

= 1 − 𝜇𝑖

where the second equality follows from V (mc𝑖𝑡) = 𝑅−1
𝑖

∥ Σ
1
2
𝑧 G′

𝑖
∥2 in (D.19). The last two equalities follows from

previous derivations of 𝑑𝑖1, 𝜈2
𝑖
, and 𝜇𝑖 : (D.20), (D.27), and (D.28). Therefore, it follows that

𝛿∗𝑖 = −1
2 log

(
1 − 𝜇𝑖

)
which completes the proof. □

To summarize, the isomorphic relation between 𝛿∗
𝑖
and 𝜇𝑖 indicates that sectoral attentions and signal precisions,

and therefore nominal rigidities, are indeed equivalent.

F.2 An Illustrative Example

To further clarify the dependence of sectoral attentions and endogenous feedbacks of attentions on model prim-
itives (A,𝚺z ,κ), we present a special example with closed-form characterizations. In this special example, we
isolate a particular channel of endogenous feedbacks of attentions documented in Proposition 4.2 , which cor-
responds to the within-sector streategic complementarity, or the diagonal elements in 𝒯𝜇 (see Corollary F.1).
Specifically, we consider an economy in which a sector 𝑖 is rationally inattentive while other sectors have complete
information. That is, we impose the following assumption on sectoral information cost,

Assumption 2. 𝜒𝑖 > 0 and 𝜒𝑗 = 0, ∀𝑗 ≠ 𝑖.

Assumption 2 implies that the rest of economies feature full price-flexibilities 𝜇𝑗 = 1, ∀𝑗 ≠ 𝑖. The convinent feature
allows for closed-form characterization in the next proposition.

Proposition F.2. Under Assumption 2, sector 𝑖’s equilibrium attention 𝜇𝑖 is determined by the following quadratic equation

𝜒𝑖

𝜃𝑖𝜆𝑖

(
1 +

(
1 − 𝜇𝑖

) [∑𝑁
𝑗=1

(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ] )2

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 = 1 − 𝜇𝑖

where 𝑙𝑖 𝑗 ≥ 0 is the (𝑖 , 𝑗) th element of the Leontief inverse matrix L = (I−A)−1. If
∑𝑁

𝑗=1 𝑙𝑖 𝑗𝑎 𝑗𝑖 < 1 and 𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2
>[

1 +∑𝑁
𝑗=1

(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ]2
, the unique equilibrium solution is given by

𝜇𝑖 = 1−
𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 − 2
∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

)
−

√
𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2
[
𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 − 4
∑𝑁

𝑗=1(𝑙𝑖 𝑗𝑎 𝑗𝑖)
]

2
(∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) )2 (F.1)
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Proof. Under Assumption 2, the attention-distorted Leontief matrix can be expanded as

(I − Aµ)−1 =

©­­­­­­«
I − A



1 0 ... 0
0 1 ... 0
... ... 𝜇𝑖

...

0 ...
. . . 1


ª®®®®®®¬

−1

=

©­­­­­­«
I − A − A



0 0 ... 0
0 0 ... 0
... ... (𝜇𝑖 − 1) ...

0 ...
. . . 0


ª®®®®®®¬

−1

=
(
I − A − AG𝜇𝑖

)−1
,

where we define G𝜇𝑖
=



0 0 ... 0
0 0 ... 0
... ... (𝜇𝑖 − 1) ...

0 ...
. . . 0


. Then by matrix geometric series expansion,

(I − Aµ)−1 =
(
I − A − AG𝜇𝑖

)−1
=

∞∑
𝑛=0

(
LAG𝜇𝑖

)𝑛 L,

where L = (I − A)−1 is the Leontief inverse. Expanding the summation,

∞∑
𝑛=0

(
LAG𝜇𝑖

)𝑛
= I +



0 0 ...
[
(𝜇𝑖 − 1)(L𝑟

1A𝑐
𝑖
)
] ∑∞

𝑛=0
[
(𝜇𝑖 − 1)(L𝑟

𝑖
A𝑐

𝑖
)
]𝑛 0 ... 0

0 0 ...
[
(𝜇𝑖 − 1)(L𝑟

2A𝑐
𝑖
)
] ∑∞

𝑛=0
[
(𝜇𝑖 − 1)(L𝑟

𝑖
A𝑐

𝑖
)
]𝑛 0 ... 0

... ... ...
[
(𝜇𝑖 − 1)(L𝑟

𝑖
A𝑐

𝑖
)
] ∑∞

𝑛=0
[
(𝜇𝑖 − 1)(L𝑟

𝑖
A𝑐

𝑖
)
]𝑛 0 ... 0

... ... ...
[
(𝜇𝑖 − 1)(L𝑟

𝑁
A𝑐

𝑖
)
] ∑∞

𝑛=0
[
(𝜇𝑖 − 1)(L𝑟

𝑖
A𝑐

𝑖
)
]𝑛 0 ... 0


,

where L𝑟
𝑛 denotes the 𝑛th row of the Leontief matrix L, and A𝑐

𝑖
denotes the 𝑖th column of A. The inner product is

defined as L𝑟
𝑛A𝑐

𝑖
=

∑𝑁
𝑗=1

(
𝑙𝑛𝑗𝑎 𝑗𝑖

)
. Since the matrix inversion (I − Aµ)−1 exists, the scalar infinite series converge to

∞∑
𝑛=0

[
(𝜇𝑖 − 1)(L𝑟

𝑖 A
𝑐
𝑖 )
]𝑛

=
1(

1 − (𝜇𝑖 − 1)
[∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ] ) .
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Therefore, the matrix series converges to
∑∞

𝑛=0
(
LAG𝜇𝑖

)𝑛
=



1 0 ...
(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙1𝑗 𝑎 𝑗𝑖)

](
1−(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)

] ) 0 ... 0

0 1 ...
(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙2𝑗 𝑎 𝑗𝑖)

](
1−(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)

] ) 0 ... 0

... ... ... 1 +
(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)

](
1−(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)

] ) 0 ... 0

... ... ...
(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙𝑁𝑗 𝑎 𝑗𝑖)

](
1−(𝜇𝑖−1)

[∑𝑁
𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)

] ) 0 ... 1



.

Define the RI-induced distortion coefficient as

𝜛𝑖 = 1 +
(𝜇𝑖 − 1)

[∑𝑁
𝑗=1

(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ](
1 − (𝜇𝑖 − 1)

[∑𝑁
𝑗=1

(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ] ) =
1(

1 + (1 − 𝜇𝑖)
[∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ] ) ∈ [0, 1].

It follows that the 𝑖th row of the matrix inversion is given by

e𝑖 (I − Aµ)−1
= e𝑖

∞∑
𝑛=0

(
LAG𝜇𝑖

)𝑛 L = 𝜛𝑖

[
𝑙𝑖1 𝑙𝑖2 ... 𝑙𝑖𝑛

]
= 𝜛𝑖e𝑖(I − A)−1 = 𝜛𝑖e𝑖L, (F.2)

which is a distortion to the 𝑖th row of the original Leontief matrix. Thus

e𝑖 (I − Aµ)−1 (−I +ακ) = 𝜛𝑖e𝑖L (−I +ακ) = 𝜛𝑖e𝑖 (−L + 1κ) ,

where I use the property that Lα = 1. Now the volatility of marginal cost is given by

V (mc𝑖𝑡) =



e𝑖

[
(I − Aµ)−1 (−I +ακ)

]
𝚺1/2
𝑧




2

=




𝜛𝑖e𝑖 (−L + 1κ)𝚺1/2
𝑧




2

= 𝜛2
𝑖

𝑁∑
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2

=

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2(
1 + (1 − 𝜇𝑖)

[∑𝑁
𝑗=1(𝑙𝑖 𝑗𝑎 𝑗𝑖)

] )2 .

Then the fixed point system (3.6) follows:

𝜇𝑖 = 1 − 𝜒𝑖

𝜃𝑖𝜆𝑖

(
1 + (1 − 𝜇𝑖)

[∑𝑁
𝑗=1(𝑙𝑖 𝑗𝑎 𝑗𝑖)

] )2

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 (F.3)
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(F.3) is a quadratic equation in terms of 𝜇𝑖 ,

𝒮2
𝑖 𝑥̄

2
𝑖 + (2𝒮𝑖 − 𝒩𝑖) 𝑥̄𝑖 + 1 = 0, (F.4)

where we define46

𝑥̄𝑖 = (1 − 𝜇𝑖) ∈ [0, 1]; 𝒮𝑖 =


𝑁∑
𝑗=1

(𝑙𝑖 𝑗𝑎 𝑗𝑖)
 ≥ 0; 𝒩𝑖 =

𝜃𝑖𝜆𝑖

𝜒𝑖

𝑁∑
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2
.

We also define 𝒬𝑖 =

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖 as the discriminant of the above quadratic equation. If 0 < 𝒮𝑖 < 1 and

𝒩𝑖 > (1 + 𝒮𝑖)2, it is easy to deduce that

−2𝒮𝑖 − 𝒩𝑖

2𝒮2
𝑖

>
(1 + 𝒮𝑖)2 − 2𝒮𝑖

2𝒮2
𝑖

> 1, 𝒬𝑖 =

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖 > 0, (F.5)

Therefore, the quadratic curver centers at 𝑥̄𝑖 = − 2𝒮𝑖−𝒩𝑖

2𝒮2
𝑖

> 1 with two distinct solutions,

𝑥̄𝑖 =
(𝒩𝑖 − 2𝒮𝑖) ±

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

2𝒮2
𝑖

(F.6)

It is clear that the bigger solution is larger than 1, so all we need to show is that the smaller solution is bounded
above by 1. By the property of quadratic function, it suffices to show that at 𝑥̄𝑖 = 1, the function
𝑔 (𝑥̄𝑖) ≡ 𝒮2

𝑖
𝑥̄2
𝑖
+ (2𝒮𝑖 − 𝒩𝑖) 𝑥̄𝑖 + 1 is negative,

𝑔(1) = 𝒮2
𝑖 + (2𝒮𝑖 − 𝒩𝑖) + 1 < 0

which is satisfied by our assumption.

Now if 𝒮𝑖 = 0 and 𝒩𝑖 > (1 + 𝒮𝑖)2 = 1, the quadratic equation (F.4) degenerate into a linear equation in terms of 𝑥̄𝑖 ,

𝑥̄𝑖 =
1
𝒩𝑖

∈ (0, 1) (F.7)

To summarize, we collate the definitions of notations 𝑥̄𝑖 , 𝒮𝑖 and 𝒩𝑖 in (F.4), the above conditions show that if∑𝑁
𝑗=1 𝑙𝑖 𝑗𝑎 𝑗𝑖 < 1 and 𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2
>

[
1 +∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ]2
, the unique equilibrium solution is given by

𝜇𝑖 = 1−
𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 − 2
∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

)
−

√
𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2
[
𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 − 4
∑𝑁

𝑗=1(𝑙𝑖 𝑗𝑎 𝑗𝑖)
]

2
(∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) )2 . (F.8)

46By definition of the Leontief inverse, 𝒮𝑖 =

[∑𝑁
𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)

]
≥ 0.
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We notice that (F.7) and (F.8) coincides at 𝒮𝑖 = 0 by L’Hôpital’s rule,

lim
𝒮𝑖→0

𝑥̄𝑖 = lim
𝒮𝑖→0

−2 + 2𝒩𝑖

(
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

)− 1
2

4𝒮𝑖
= lim

𝒮𝑖→0

4𝒩 2
𝑖

(
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

)− 3
2

4 =
1
𝒩𝑖

=
𝜒𝑖

𝜃𝑖𝜆𝑖

1∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 . (F.9)

The proof is now complete. The next two Propositions inherit the same parameter restrictions as in Proposition
F.2. □

To digest the message of Proposition F.2, we note that the volatity of marginal cost admits representation,

V (𝑚𝑐𝑖𝑡) =
∑𝑁

𝑗=1
[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2(
1 +

(
1 − 𝜇𝑖

) [∑𝑁
𝑗=1

(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) ] )2 = 𝜛2
𝑖

𝑁∑
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 ; 𝜛𝑖 ∈ [0, 1].

The term
∑𝑁

𝑗=1
[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2 captures the upstream uncertainty of sector 𝑖’s suppliers determined by policy and
production network’s Leontief inverse. The term 𝜛 = 1(

1+(1−𝜇𝑖)
[∑𝑁

𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)
] ) ∈ [0, 1] captures a dampening factor

due to endogenous feedbacks of attentions (within-sector complementarity). The intuition is straightforward:
inattentive pricing decisions reduces input (marginal cost) uncertainties via production network, feedbacking to
further inattentiveness. This dampening factor vanishes when information is perfect (𝜇𝑖 = 1), but increases in the
nominal rigidities (𝜇𝑖 ↓). It also hinges on the downstream (suppliers → customers) propogation patterns of the
production network, operated through 𝑖’s customer then its suppliers (𝑎 𝑗𝑖 𝑙𝑖 𝑗).47

Suppose the parameter restrictions in Proposition F.2 are satisfied so that a unique equilibrium exists and is given
by (F.1). Then we make two important theoretical predictions.

Proposition F.3. Sector 𝑖’s equilibrium attention is increasing in its productivity shock’s volatility, 𝜕𝜇𝑖

𝜕𝜎2
𝑖

> 0.

Proof. Recall from equations (F.6) and (F.7), if 𝒮𝑖 = 0,

𝜕𝑥̄𝑖
𝜕𝒩𝑖

= − 1
𝒩 2

𝑖

< 0

On the other hand, if 0 < 𝒮𝑖 < 1,48

47This feature relies on the assumptions of Cobb-Douglas technology and monopolistic competition. More generally,
we note that in matrix form,

𝑁∑
𝑗=1

(
𝑙𝑖 𝑗 𝑎 𝑗𝑖

)
=

[
(𝐼 − 𝐴)−1𝐴

]
(𝑖 ,𝑖)

=

[
𝐴 + 𝐴2 + ...

]
(𝑖 ,𝑖)

.

48By continuity of derivatives, it is easy to verify using the L’Hôpital’s rule that

lim
𝒮𝑖→0+

𝜕𝑥̄𝑖
𝜕𝒩𝑖

= lim
𝒮𝑖→0+

1
2𝒮2

𝑖

©­­«1 − (𝒩𝑖 − 2𝒮𝑖)√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

ª®®¬ = − 1
𝒩 2

𝑖

< 0.
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𝜕𝑥̄𝑖
𝜕𝒩𝑖

=
1

2𝒮2
𝑖

©­­«1 − (𝒩𝑖 − 2𝒮𝑖)√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

ª®®¬ < 0,

where 𝑥̄𝑖 = (1 − 𝜇𝑖), 𝒮𝑖 =

[∑𝑁
𝑗=1(𝑙𝑖 𝑗𝑎 𝑗𝑖)

]
and 𝒩𝑖 =

𝜃𝑖𝜆𝑖

𝜒𝑖

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2. Combining 𝜕𝜇𝑖

𝜕𝑥̄𝑖
= −1 and 𝜕𝒩𝑖

𝜕𝜎2
𝑖

=

𝜃𝑖𝜆𝑖

𝜒𝑖
(𝑘𝑖 − 𝑙𝑖𝑖)2 ≥ 0,

𝜕𝜇𝑖

𝜕𝜎2
𝑖

=
𝜕𝜇𝑖

𝜕𝑥̄𝑖

𝜕𝑥̄𝑖
𝜕𝒩𝑖

𝜕𝒩𝑖

𝜕𝜎2
𝑖

≥ 0

□

More generally, sectoral attention 𝜇𝑖 increases when firms in this sector face higher upstream uncertainty captured
by

∑𝑁
𝑗=1

[ (
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2. The prediction of Proposition F.3 implies a NEGATIVE correlation between sectoral
nominal rigidities and shock uncertainties. Such correlation is absent in the Calvo model of sticky prices, the
model of exogenous-information frictions, and in models of fixed-capacity information acquisition. In quantitative
analysis in Section 5 , we show that the negative correlation continues to hold when all sectors in the network are
subjective to rational inattention. In this regard, the above proposition provides a testable empirical prediction
that helps distinguish different modeling approaches of information-driven nominal rigidities.

Proposition F.3 characertizes the attention-volatility correlation from the perspective of browser. The next propo-
sition characterize the endogenous feedback effect of attentions from the perspective of browsees.

Proposition F.4. A firm in sector 𝑖 has lower attention if sector 𝑖’s relative importance as a supplier increases. That is,
𝜕𝜇𝑖

𝜕
∑𝑁

𝑗=1(𝑙𝑖 𝑗 𝑎 𝑗𝑖)
< 0.49

Proof. Recall from equation (F.4), if 𝒮𝑖 > 0

𝜕𝑥̄𝑖
𝜕𝒮𝑖

=

2𝒮2
𝑖

[
−2 + 2𝒩𝑖

(
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

)− 1
2
]
− 4𝒮𝑖

[
(𝒩𝑖 − 2𝒮𝑖) −

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

]
4𝒮4

𝑖

=
𝒮𝑖 + 𝒮𝑖𝒩𝑖

𝒬𝑖
− 𝒩𝑖 + 𝒬𝑖

𝒮3
𝑖

=
𝒮𝑖𝒬𝑖 + 𝒮𝑖𝒩𝑖 − 𝒩𝑖𝒬𝑖 + 𝒬2

𝑖

𝒮3
𝑖
𝒬𝑖

.

(F.10)

49We assume the input certainty
∑𝑁

𝑗=1

[(
𝜅 𝑗 − 𝑙𝑖 𝑗

)
𝜎𝑗

]2
remains unchanged by adjusting the sectoral shock volatilities{

𝜎2
𝑗

}𝑁
𝑗=1

.
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Using some algebraic tricks, we simplify the equation as

𝒮𝑖𝒬𝑖 + 𝒮𝑖𝒩𝑖 − 𝒩𝑖𝒬𝑖 + 𝒬2
𝑖 = 𝒮𝑖

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖 + 𝒮𝑖𝒩𝑖 − 𝒩𝑖

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖 + 𝒩 2

𝑖 − 4𝒩𝑖𝒮𝑖

=
1
2

(
𝒩𝑖 −

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

)2

− 𝒮𝑖

(
𝒩𝑖 −

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

)
,

Given the parameter restrictions specified in Proposition F.2, 𝜕𝑥̄𝑖
𝜕𝒮𝑖

> 0 if and only if
(
𝒩𝑖 −

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

)
> 2𝒮𝑖 .

Now construct a continuous function 𝐹(𝒮𝑖) =
(
𝒩𝑖 −

√
𝒩 2

𝑖
− 4𝒩𝑖𝒮𝑖

)
− 2𝒮𝑖 on 𝒮𝑖 ∈ [0, 1). We notice that

𝑑𝐹(𝒮𝑖)
𝑑𝒮𝑖

=
2𝒩𝑖√

𝒩 2
𝑖
− 4𝒩𝑖𝒮𝑖

− 2 > 0 (F.11)

when 𝒮𝑖 > 0. Meanwhile, 𝐹(𝒮𝑖)
��
𝒮𝑖=0 = 0. Therefore, 𝐹(𝒮𝑖)

��
𝒮𝑖>0 > 0, implying that 𝜕𝑥̄𝑖

𝜕𝒮𝑖
> 0 based on conditions

(F.10) - (F.11).

When 𝒮𝑖 = 0, we notice that by (F.9) and (F.7), the function 𝑥̄𝑖(𝒮𝑖) is continuous on 𝒮𝑖 = 0+. Applying the
L’Hôpital’s rule,

𝜕𝑥̄𝑖
𝜕𝒮𝑖

����
𝒮𝑖=0+

= lim
𝒮𝑖→0+

𝑥̄𝑖(𝒮𝑖 > 0) − 𝑥̄𝑖(𝒮𝑖 = 0)
𝒮𝑖 − 0

= lim
𝒮𝑖→0+

(𝒩𝑖−2𝒮𝑖)−
√

𝒩 2
𝑖
−4𝒩𝑖𝒮𝑖

2𝒮2
𝑖

− 1
𝒩𝑖

𝒮𝑖

= lim
𝒮𝑖→0+

𝒩𝑖 − 2𝒮𝑖 −
2𝒮2

𝑖

𝒩𝑖
− 𝒬𝑖

2𝒮3
𝑖

= lim
𝒮𝑖→0+

−2 − 4𝒮𝑖

𝒩𝑖
− 𝜕𝒬𝑖

𝜕𝒮𝑖

6𝒮2
𝑖

= lim
𝒮𝑖→0+

− 4
𝒩𝑖

− 𝜕2𝒬𝑖

𝜕𝒮2
𝑖

12𝒮𝑖

= lim
𝒮𝑖→0+

− 𝜕3𝒬𝑖

𝜕𝒮3
𝑖

12 =
2
𝒩 2

𝑖

> 0

(F.12)

where lim
𝒮𝑖→0+

𝒬𝑖 = 𝒩𝑖 , lim
𝒮𝑖→0+

𝜕𝒬𝑖

𝜕𝒮𝑖
= −2, lim

𝒮𝑖→0+
𝜕2𝒬𝑖

𝜕𝒮2
𝑖

= − 4
𝒩𝑖

, and lim
𝒮𝑖→0+

𝜕3𝒬𝑖

𝜕𝒮3
𝑖

= − 24
𝒩 2

𝑖

.

Finally, recall from the definition of 𝑥̄𝑖 = 1 − 𝜇𝑖 and 𝒮𝑖 =
∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

)
, we obtain

𝜕𝜇𝑖

𝜕
∑𝑁

𝑗=1
(
𝑙𝑖 𝑗𝑎 𝑗𝑖

) = − 𝜕𝑥̄𝑖
𝜕𝒮𝑖

< 0

as desired. □
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Intuitively, when sector 𝑖 becomes a more important supplier, each firm (𝑖 , 𝜄)’s inattention has a larger impact on
other firms because it is being more closely watched as a browsee by other firms in the sector. Therefore, sector
𝑖’s nominal rigidity has stronger dampening feedback effect on the equilibrium attention of firms in this sector.
While our analysis in this example focus on within-sector strategic complementarity, the underlying intuition
also applies to more general setting of inattentive production network with multivariate attention linkages and
inter-sector strategic complementarities, and we verify this insight in Section 5 .

F.3 Strategic Complementarity of Sectoral Attentions and Nominal Rigidities

Using Proposition 4.2, we define 𝒯µ𝑣 as the strategic-complementarity matrix of attentions among sectors, cap-
turing attention linkages in the production network. The next corollary shows that sectoral attentions are indeed
strategic complements when monetary policy completely stabilize wages.

Corollary F.1. If κ = 0, the strategic complementarity matrix of attentions 𝒯µ𝑣 ≥ 0 is a non-negative matrix.

Proof. Recall an expression of 𝒯µ𝑣 in equation (E.30), if κ = 0, then Γ = (−I +α𝜅) = −I and

𝒯µ𝑣 = 2 diag ©­«
{

𝜒𝑖

𝜃𝑖𝜆𝑖𝑉
2
𝑖

}𝑁

𝑖=1

ª®¬
[(

∆𝜇Γ𝚺𝑧Γ′∆′
𝜇

)
⊙

(
∆𝜇A

) ]
= 2 diag ©­«

{
𝜒𝑖

𝜃𝑖𝜆𝑖𝑉
2
𝑖

}𝑁

𝑖=1

ª®¬
[(

∆𝜇𝚺𝑧∆′
𝜇

)
⊙

(
∆𝜇A

) ]
≥ 0, (F.13)

since 𝜒𝑖 , 𝜃𝑖 ,𝜆𝑖 > 0 by definition, and ∆𝜇 > 0 from (D.41). □

If we express the feedback (complementarity) matrix as 𝒯µ𝑣 =


𝜕𝒯1
𝜕𝜇1

𝜕𝒯1
𝜕𝜇2

· · · 𝜕𝒯1
𝜕𝜇𝑁

...
...

. . .
...

𝜕𝒯𝑁
𝜕𝜇1

𝜕𝒯𝑁
𝜕𝜇2

· · · 𝜕𝒯𝑁
𝜕𝜇𝑁

 , the diagonal entries

capture the WITHIN-sector feedbacks while off-diagonal elements represent the INTER-sector feedbacks of
attentions. Clearly, the these strategic linkages are jointly controlled by the triple (A,𝚺z ,κ).
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G. Calibration and Quantitative Analysis

G.1 Calibration of Information Cost

We use indirect inference to calibrate the marginal information cost 𝜒𝑖 in different sectors. In our models with
monetary policy, any model-implied moment is endogeous/variant to the choice of policy. Therefore, we first fix
a policy environment that is consistent with the conduct of monetary policy in our data sample period.

CPI policy environment. We focus on a model with monetary policy that targets CPI stability (inflation targeting).
This is consistent with the emprical evidence that within our sample period, the CPI is largely constant. We
consider the following price stabilization

CPI =
𝑁∑
𝑖=1

𝜑𝑖𝑝𝑖𝑡 = 0; 𝜑𝑖 = 𝛽𝑖 ; ∀𝑖 = 1, 2, ...𝑁 (G.1)

where β is calibrated to match the share of final uses of each industry’s output. La’O and Tahbaz-Salehi (2022)
argue that this formulation is akin to CPI stabilization policy.

Monetary Policy Rule. Price stabilization (G.1) is an implication and feature of the monetary policy, but not the
policy itself. So next, we convert the price stabilization into the corresponding monetary policy rule. Using the
equilibrium pricing function (3.7), we find that

𝑁∑
𝑖=1

𝜑𝑖𝑝𝑖𝑡 = φ(I − µA)−1µ(−I +ακ)z𝑡 = 0, (G.2)

which holds for any productivity shock vector z𝑡 . Thus, φ(I − µA)−1µ(−I +ακ) ≡ 0 such that

κ =
1

φ′(I − µA)−1µα
φ′(I − µA)−1µ, (G.3)

which provides a correspondence between the monetary policy (wage) rule κ and the price stabilization policy
weight φ. As Lemma E.3 predicts, any price-stabilization policy satisfies the condition κα = 1.

Equilibrium under CPI stability. Under CPI policy environment, the general equilibrium fixed-point is deter-
mined by the equation system (3.6), which implicitly define the mapping from CPI-based κ𝐶𝑃𝐼 to µ𝐶𝑃𝐼 as

µ𝐶𝑃𝐼 = ℱ
(
κ𝐶𝑃𝐼

)
(G.4)

Meanwhile, to achieve CPI stability, the monetary policy rule is also endogenous, given by (G.3) and φ = β, we
have (

κ𝐶𝑃𝐼
) ′
=

1
β′(I − µ𝐶𝑃𝐼A)−1µ𝐶𝑃𝐼α

β′(I − µ𝐶𝑃𝐼A)−1µ𝐶𝑃𝐼 . (G.5)

Therefore, the fixed point system (G.4) and (G.5) jointly determines equilibrium under CPI stability.
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Forecast error in model. We first derive the expression for firms’ revenue. Recall that The output of firm 𝜄 in
sector 𝑖 is determined by 𝑌𝑖𝜄𝑡 = (𝑃𝑖𝜄𝑡/𝑃𝑖𝑡)−𝜃𝑖𝑌𝑖𝑡 . The demand of firms in sector 𝑗 for intermediate goods produced
in sector 𝑖 is given by

𝑋𝑗𝑖𝑡 =

∫ 1

0
𝑋𝑗𝜄𝑖𝑡𝑑𝜄

= 𝑎 𝑗𝑖
MC𝑗𝑡

𝑃𝑖𝑡

∫ 1

0
𝑌𝑗𝜄𝑡𝑑𝜄

= 𝑎 𝑗𝑖
𝑃𝑗𝑡𝑌𝑗𝑡

𝑃𝑖𝑡
MC𝑗𝑡𝑃

𝜃𝑗−1
𝑗𝑡

∫ 1

0
𝑃
−𝜃𝑗

𝑗𝜄𝑡 𝑑𝜄

= 𝑎 𝑗𝑖
𝑃𝑗𝑡𝑌𝑗𝑡

𝑃𝑖𝑡
𝛾𝑗𝑡 ,

where 𝛾𝑗𝑡 = 𝑀𝐶 𝑗𝑡𝑃
𝜃𝑗−1
𝑗𝑡

∫ 1
0 𝑃

−𝜃𝑗

𝑗𝜄𝑡 𝑑𝜄 is a function of prices.

The market clearing condition for sector good 𝑖 is given by

𝑌𝑖𝑡 = 𝐶𝑖𝑡 +
𝑁∑
𝑗=1

∫ 1

0
𝑋𝑗𝜄𝑖𝑡𝑑𝜄.

which implies that

𝑃𝑖𝑡𝑌𝑖𝑡 = 𝛽𝑖𝑃𝑡𝐶𝑡 +
𝑁∑
𝑗=1

𝑎 𝑗𝑖𝑃𝑗𝑡𝑌𝑗𝑡𝛾𝑗𝑡

Because the aggregate nominal spending is equal to the money supply 𝑃𝑡𝐶𝑡 = 𝑀𝑡 , we have

𝑃𝑖𝑡𝑌𝑖𝑡 = 𝛽𝑖𝑀𝑡 +
𝑁∑
𝑗=1

𝑎 𝑗𝑖𝑃𝑗𝑡𝑌𝑗𝑡𝛾𝑗𝑡

Log-linearizing the above equation around the steady state yields

𝜆𝑖(𝑝𝑖𝑡 + 𝑦𝑖𝑡) = 𝛽𝑖𝑚𝑡 +
𝑁∑
𝑗=1

𝑎 𝑗𝑖𝜆 𝑗(𝑦 𝑗𝑡 +
𝑁∑
𝑘=1

𝑎 𝑗𝑘𝑝𝑘𝑡 − 𝑧 𝑗𝑡)

We derive the expression for sectoral outputs in vector form,

y𝑡 =
[
(I − A′)diag(λ)

]−1 [
β𝑚𝑡 +

(
A′ diag(λ)A − diag(λ)

)
p𝑡 − A′ diag(λ)z𝑡

]
(G.6)

where the matrix form of monetary supply 𝑚𝑡 is given by Proposition 3.6,

𝑚𝑡 = ψ
′z𝑡 =

𝜂

1 + 𝛾𝜂
κz𝑡 +

(
1 − 𝜂

1 + 𝛾𝜂

)
β′(I − µA)−1µ(−I +ακ)z𝑡 +

1
1 + 𝛾𝜂

λ′z𝑡 .
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ψ is 𝑁 × 1 column vector and p𝑡 = ϕz𝑡 = (I − µA)−1µ(−I + ακ)z𝑡 . Substituting the expression of p𝑡 and 𝑚𝑡 into
equation (G.6) we obtain the sectoral revenue as a function of fundamental shocks z𝑡 ,

r𝑡 = p𝑡 + y𝑡 = 𝚿𝑟z𝑡 ,

where

𝚿𝑟 =

[
I +

[
(𝐼 − A′)diag(λ)

]−1 (
A′ diag(λ)A − diag(λ)

) ]
ϕ +

[
(𝐼 − A′)diag(λ)

]−1 [
βψ′ − A′ diag(λ)

]
(G.7)

The revenue forecast error of 𝑖-sector is given by

FE𝑟𝑒𝑣
𝑖,𝑡 =

����e𝑖

[
𝚿𝑟

(
I − (I − Σ𝑧|𝑥𝑖𝚺

−1
𝑧 )

)
z𝑡

] ��������e𝑖𝚿𝑟z𝑡 + 1
���� =

����e𝑖𝚿𝑟Σ𝑧|𝑥𝑖𝚺
−1
𝑧 z𝑡

��������e𝑖𝚿𝑟z𝑡 + 1
���� ; ∀𝑖 = 1, 2, ...𝑁

where Σ𝑧|𝑥𝑖 is the posterior covariance matrices of the fundamental shocks z𝑡 from Lemma D.1.

The firm 𝜄’s profit is given by

Π𝑖𝜄𝑡 = (1 + 𝜏𝑖)𝑃𝑖𝜄𝑡𝑌𝑖𝜄𝑡 −𝑊𝑡𝐿𝑖𝜄𝑡 −
𝑁∑
𝑗=1

𝑃𝑗𝑋𝑖𝜄 𝑗𝑡 − 𝑇𝑖𝜄𝑡 = (1 + 𝜏𝑖)𝑃𝑖𝜄𝑡𝑌𝑖𝜄𝑡 − MC𝑖𝑡𝑌𝑖𝜄𝑡 − 𝑇𝑖𝜄𝑡 , (G.8)

Next, the sectoral level profit before tax becomes

Π𝑏
𝑖𝑡 =

∫
(Π𝑖𝜄𝑡 + 𝑇𝑖𝜄𝑡) =

∫
[(1 + 𝜏𝑖)𝑃𝑖𝜄𝑡 − MC𝑖𝑡]𝑌𝑖𝜄𝑡

= (1 + 𝜏𝑖)𝑃𝑖𝑡𝑌𝑖𝑡 − 𝑃𝑖𝑡𝑌𝑖𝑡
MC𝑖𝑡

𝑃𝑖𝑡

∫ (
𝑃𝑖𝜄𝑡

𝑃𝑖𝑡

)−𝜃𝑖

= 𝑃𝑖𝑡𝑌𝑖𝑡(1 + 𝜏𝑖 − ℰ𝑖𝑡)

(G.9)

where

ℰ𝑖𝑡 =
MC𝑖𝑡

𝑃𝑖𝑡

∫ (
𝑃𝑖𝜄𝑡

𝑃𝑖𝑡

)−𝜃𝑖

(G.10)

and its log-linearized version is

𝜀𝑖𝑡 = mc𝑖𝑡 − 𝑝𝑖𝑡 − 𝜃𝑖

∫
(𝑝𝑖𝜄𝑡 − 𝑝𝑖𝑡) = mc𝑖𝑡 − 𝑝𝑖𝑡
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Also, we have mc𝑖𝑡 = 𝜇−1
𝑖𝑡
𝑝𝑖𝑡 . Thus the log-linearized version of Π𝑏

𝑖𝑡
is

𝜋𝑏
𝑖𝑡 = 𝑝𝑖𝑡 + 𝑦𝑖𝑡 +

−ℰ𝑖𝜀𝑖𝑡
1 + 𝜏𝑖 − ℰ𝑖

= 𝑝𝑖𝑡 + 𝑦𝑖𝑡 −
𝜀𝑖𝑡
𝜏𝑖

= 𝑝𝑖𝑡 + 𝑦𝑖𝑡 +
𝑝𝑖𝑡

(
1 − 𝜇−1

𝑖𝑡

)
𝜏𝑖

(G.11)

In matrix form,

π𝑏
𝑡 = p𝑡 + y𝑡 + diag (τ )−1 (

𝐼 − µ−1) p𝑡 = [
𝚿𝑟 + diag (τ )−1 (

𝐼 − µ−1) 𝚿𝑝

]
z𝑡 = 𝚿𝑒𝑝𝑠z𝑡 (G.12)

Similarly, the EPS forecast error of each sector is given by

FE𝑒𝑝𝑠

𝑖,𝑡
=

����e𝑖𝚿𝑒𝑝𝑠Σ𝑧|𝑥𝑖𝚺
−1
𝑧 z𝑡

��������e𝑖𝚿𝑒𝑝𝑠z𝑡 + 1
���� ; ∀𝑖 = 1, 2, ...𝑁

Calibration strategy. Given the equilibrium system system (G.4) and (G.5) under CPI stabilization policy, we
simulate different EPS forecast error when we calibrate the information cost χ. In particular, we impose the
following functional form

log 𝜒𝑖 = 𝛿0 + 𝛿1 log𝜆𝑖 + 𝛿2 log 𝜎𝑖 .

We calibrate the parameters 𝛿0, 𝛿1 and 𝛿2 to match the distribution of adjusted forecast errors of earnings per share
(EPS) at the sector level, which are directly related to the informational frictions. Specifically, we choose 𝛿0, 𝛿1

and 𝛿2 to minimize the following loss function,

min
𝛿0 ,𝛿1 ,𝛿2

(
FE𝑒𝑝𝑠,𝑑𝑎𝑡𝑎

𝑖=25% − FE𝑒𝑝𝑠,𝑚𝑜𝑑𝑒𝑙

𝑖=25%

)2
+

(
𝑁∑
𝑖=1

1
𝑁

FE𝑒𝑝𝑠,𝑑𝑎𝑡𝑎

𝑖
−

𝑁∑
𝑖=1

1
𝑁

FE𝑒𝑝𝑠,𝑚𝑜𝑑𝑒𝑙

𝑖

)2

+
(
FE𝑒𝑝𝑠,𝑑𝑎𝑡𝑎

𝑖=75% − FE𝑒𝑝𝑠,𝑚𝑜𝑑𝑒𝑙

𝑖=75%

)2
,

where FE𝑖 is the mean absolute forecast error of sector 𝑖 . We target the mean level of the forecast error, the 25
percentile and 75 percentile of the forecast error in the sectoral distribution. However, the volatility of EPS differs
in the data and in the model. To ensure that the forecast error is comparable, we normalize it by the volatility of
EPS, both in the data and in the model.

G.2 Computation

Numerical Algorithms. We provide two algorithms for solving the optimal policy problem defined in Definition
4. The first method is based on the first-oder condition (FOC). The second method utilizes constrained nonlinear
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programming.

FOC Method. We can solve the optimal monetary policy problem by the FOC condition:

𝑑𝐿

𝑑κ
= 0,

which finally yields the equilibrium system in Proposition E.2; that is, the jointly fixed-point system (E.7) and
(E.65) with respect to variables µ𝑣 and κ. We employ Matlab’s toolbox ’fsolve’ to solve this static and nonlinear
system. When the unique solution to this system exists, the optimal monetary policy achieves price stabilization
simultaneously by Proposition 4.3. It is worth noting that 𝜇𝑖 > 0 for all sectors 𝑖 = 1, 2, ...𝑁 is implicit in the RI
condition (D.26), and the solution of µ𝑣 to FOC must be an interior solution. The FOC method does not apply
when the solution of the optimization problem is on the zero boundary of µ𝑣 . In this case of corner solution, we
can awalys use the following constrained nonlinear programming algorithm to solve the problem.

Nonlinear Constrained Programming Method. The optimal monetary policy problem defined in Definition 4
can be transformed into a nonlinear programming problem and restated as

max
𝜚

𝐿 = Δ𝑈𝑤𝑖𝑡ℎ𝑖𝑛
𝑡 + Δ𝑈𝑂𝐺

𝑡 + Δ𝑈 𝑎𝑐𝑟𝑜𝑠𝑠
𝑡

subject to

𝜚 =

[
µ𝑣

κ

]
and nonlinear constraint (E.7). The nonlinear constrained programming (NP) method nests the FOC method as
a special case. It handles both the interior solution and the corner solution. That is, the NP algorithm allows for
the corner solution case where ∃𝜇𝑖 = 0, 𝑖 = 1, 2, ...𝑁 . When an optimal solution under the FOC structure exists,
the NP algorithm will also deliver this interior solution that coincides with the FOC solution. Numerically, we
use Matlab’s toolbox ’fmincon’ to solve the NP problem.

Accuracy of Solution. Utilizing the NP algorithm, we test the accuracy and correctness of our FOC-based
characterization of the optimal monetary policy in Section E. Specifically, under the calibration in Table 6, the
FOC-based optimal policy solution and the solution based on NP algorithm coincide. Therefore, under our model
calibration, an interior optimal policy exists and is given by our characterization in Section E. Figure G.1 plots
the optimal solution in terms of µ and φ using two algorithms. The numerical difference of the two solutions in
terms of welfare loss is smaller than 1𝑒−10.

Finally, we find that under model calibration, the OG optimal policy satisfies the condition imposed in Proposition
4.4, that is , V

(
𝑐𝑡 − 𝑐∗𝑡

)
= 0. Figure G.2 plots the output-gap volatility under perturbation around different sectors’

optimal OG policy, which shows that the output-gap volatility reduces to 0 at the optimum.
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Figure G.1: Accuracy of Solution for Optimal Monetary Policy

Figure G.2: Completely Stabilized OG Volatility
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